Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Guided Retraining to Enhance the Detection of Difficult Android Malware
DAOUDI, Nadia; Allix, Kevin; BISSYANDE, Tegawendé François D Assise et al.
2023In 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023)
Peer reviewed
 

Documents


Texte intégral
Guided_Retraining_preprint.pdf
Preprint Auteur (1.91 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android; malware; retraining; difficult samples
Résumé :
[en] The popularity of Android OS has made it an appealing target for malware developers. To evade detection, including by ML-based techniques, attackers invest in creating malware that closely resemble legitimate apps, challenging the state of the art with difficult-to-detect samples. In this paper, we propose Guided Retraining, a supervised representation learning-based method for boosting the performance of malware detectors. To that end, we first split the experimental dataset into subsets of “easy” and “difficult” samples, where difficulty is associated to the prediction probabilities yielded by a malware detector. For the subset of “easy” samples, the base malware detector is used to make the final predictions since the error rate on that subset is low by construction. Our work targets the second subset containing “difficult” samples, for which the probabilities are such that the classifier is not confident on the predictions, which have high error rates. We apply our Guided Retraining method on these difficult samples to improve their classification. Guided Retraining leverages the correct predictions and the errors made by the base malware detector to guide the retraining process. Guided Retraining learns new embeddings of the difficult samples using Supervised Contrastive Learning and trains an auxiliary classifier for the final predictions. We validate our method on four state-of-the-art Android malware detection approaches using over 265k malware and benign apps. Experimental results show that Guided Retraining can boost state-of-the-art detectors by eliminating up to 45.19% of the prediction errors that they make on difficult samples. We note furthermore that our method is generic and designed to enhance the performance of binary classifiers for other tasks beyond Android malware detection.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Allix, Kevin;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Guided Retraining to Enhance the Detection of Difficult Android Malware
Date de publication/diffusion :
2023
Nom de la manifestation :
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023)
Lieu de la manifestation :
Seattle, Etats-Unis
Date de la manifestation :
from 17-07-2023 to 21-07-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023)
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16344458 - Pre And Post Processing For Comprehensive And Practical Android App Static Analysis, 2021 (01/07/2022-30/06/2025) - Jacques Klein
Organisme subsidiant :
University of Luxembourg - UL
Luxembourg Ministry of Foreign and European Affairs
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 01 septembre 2023

Statistiques


Nombre de vues
117 (dont 4 Unilu)
Nombre de téléchargements
103 (dont 1 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu