Guided Retraining to Enhance the Detection of Difficult Android

Malware
Nadia Daoudi Kevin Allix
nadia.daoudi@uni.lu kevin.allix@centralesupelec.fr
University of Luxembourg CentraleSupelec
Luxembourg France
Tegawendé F. Bissyandé Jacques Klein
tegawende.bissyande@uni.lu jacques.klein@uni.lu
University of Luxembourg University of Luxembourg
Luxembourg Luxembourg
ABSTRACT KEYWORDS

The popularity of Android OS has made it an appealing target for
malware developers. To evade detection, including by ML-based
techniques, attackers invest in creating malware that closely resem-
ble legitimate apps, challenging the state of the art with difficult-to-
detect samples. In this paper, we propose GUIDED RETRAINING, a
supervised representation learning-based method for boosting the
performance of malware detectors. To that end, we first split the
experimental dataset into subsets of “easy” and “difficult” samples,
where difficulty is associated to the prediction probabilities yielded
by a malware detector. For the subset of “easy” samples, the base
malware detector is used to make the final predictions since the er-
ror rate on that subset is low by construction. Our work targets the
second subset containing “difficult” samples, for which the probabil-
ities are such that the classifier is not confident on the predictions,
which have high error rates. We apply our GUIDED RETRAINING
method on these difficult samples to improve their classification.
GUIDED RETRAINING leverages the correct predictions and the er-
rors made by the base malware detector to guide the retraining
process. GUIDED RETRAINING learns new embeddings of the diffi-
cult samples using Supervised Contrastive Learning and trains an
auxiliary classifier for the final predictions. We validate our method
on four state-of-the-art Android malware detection approaches us-
ing over 265k malware and benign apps. Experimental results show
that GUIDED RETRAINING can boost state-of-the-art detectors by
eliminating up to 45.19% of the prediction errors that they make on
difficult samples. We note furthermore that our method is generic
and designed to enhance the performance of binary classifiers for
other tasks beyond Android malware detection.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; - Com-
puting methodologies — Machine learning.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598123

Android, malware, retraining, difficult samples

ACM Reference Format:

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. 2023.
Guided Retraining to Enhance the Detection of Difficult Android Malware. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598123

1 INTRODUCTION

Android malware plays hide and seek with mobile applications
markets operators. Indeed, new emerging malware apps are in-
creasingly sophisticated [11, 19, 23] and challenge state-of-the-art
detection techniques, in particular literature ML-based approaches.
These malware apps are designed to closely resemble benign apps
in order to hide their malicious behaviour and evade detection. In
typical ML-based malware detection schemes, Android apps are
represented using feature vectors (i.e., apps are embedded), which
are fed to an algorithm that learns to distinguish malware and
benign samples. In such an embedding space, some malware (or
benign) samples occupy a distinct region of the input space [54].
These samples share similar feature vectors that make them easily
distinguishable and separable from the benign (respectively mal-
ware) apps in the embedding space. Nevertheless, there are other
malware apps which have feature vectors that are similar to fea-
ture vectors of benign samples. Such apps are located in regions of
the embedding space where malware and benign samples are not
perfectly separable and distinguishable. In such regions, malware
and benign apps overlap, which leads to misclassifications.

Deep representation learning aims to extract relevant patterns
from the input data and discard the noise. Several techniques [20,
22, 36, 46, 47] have leveraged the class labels to generate powerful
representations, which has led to state-of-the-art performance. In-
deed, supervised representation learning methods are trained to
automatically learn characteristic features of samples that share
the same class labels. The resulting embeddings are passed to a
classifier that maps the samples to their respective classes. Recently,
Supervised Contrastive Learning [22] has been proposed to max-
imise the embedding similarity of samples from the same class
and minimise the embedding similarity of samples belonging to
different classes. This representation learning method transforms
the input data into an embedding space in which samples with

https://doi.org/10.1145/3597926.3598123
https://doi.org/10.1145/3597926.3598123

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

the same labels are close to each other, so they can have similar
representations. Furthermore, it increases the distance between
samples from different classes so they can get distinct representa-
tions. Supervised Contrastive Learning seems to propose a solution
for overlapping malware and benign samples since it transforms
the input data into a new embedding space in which samples from
the same class are grouped together and separated from the other
class.

In binary classification, we can distinguish between two cate-
gories of samples based on their input labels: positives and negatives
(e.g., malware and benign). It is also possible to classify samples
into easy and difficult instances based on their feature vectors. Easy
samples refer to positive and negative instances which a classifier
can easily identify and correctly predict their classes. The difficult
samples can also be positives or negatives, but they have similar
input features that make it challenging for the classifier to cor-
rectly identify their classes. The notion of difficulty is related to
the malware detector itself (i.e., its features set and ML algorithm).
Specifically, depending on the features and the classification algo-
rithm leveraged by a malware detector, a malware app might be
difficult to detect by one approach but easy to detect by another.
For a base classifier, identifying the class of the easy samples would
be straightforward, which results in low prediction errors. For the
difficult samples, they would need more advanced techniques to
better discriminate the two classes.

In this paper, we investigate the feasibility of boosting existing
malware detectors by focusing on difficult-to-detect samples. To
that end, we explore the power of contrastive learning with the idea
of further guiding the learning to build embeddings where samples
that were previously close to samples of other classes are now
clearly separated in the embedding space. We propose to address
the problem of malware classification in two steps: The first step of
the classification involves the samples that are easy to predict by
a base classifier. To decide whether a sample is easy or difficult to
predict, we rely on the prediction probabilities yielded by the base
classifier. Thus, all samples that are identified as easy (i.e., with
high prediction probabilities from the base classifier), are simply
left to be predicted by the base classifier. If a sample is identified
as difficult (i.e., with low prediction probabilities from the base
classifier), then it is passed to the second step where an auxiliary
classifier trained via our GUIDED RETRAINING method is meant to
address its final prediction. Note that we use the term “Retraining”
to refer to the task which consists in training a new classifier on a
given dataset. As its name suggests, our technique is designed to
guide the retraining on the difficult samples to reduce the prediction
errors. We rely on the predictions generated by the base classifier
on the difficult samples to learn distinctive representations for each
class. Specifically, we leverage Supervised Contrastive Learning to
generate embeddings for the difficult samples in five guided steps
that teach the model to learn from the correct predictions and errors
made by the base classifier. Then, we train an auxiliary classifier
on the generated embeddings so it can make the final classification
decision on the difficult samples.

To validate the effectiveness of our method, we evaluate it on four
state-of-the-art Android malware detectors (i.e., with their variants)
that were successfully replicated in the literature [7]: DREBIN [4],
REVEALDROID [15], MAMADRoOID [31], and MALScAN [50]. These

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

detectors consider various features to discriminate between mal-
ware and benign apps, and they have been reported to be highly
effective. Our experiments demonstrate that the prediction errors
made by state-of-the-art Android malware detectors can be reduced
via our GUIDED RETRAINING method. Specifically, we show that
our technique boosts the detection performance and reduces up to
45.19% prediction errors made by the classifiers.

We have also assessed the effectiveness of our method in boost-
ing the detection performance on new Android apps. For instance,
we have trained the state-of-the-art DREBIN on samples from 2019
and tested its performance on apps from 2020. Our results showed
that DREBIN achieves an F1 score of 85.31%. After using our GUIDED
RETRAINING approach on DREBIN, it was able to detect 769 mali-
cious samples that escaped its detection in the first place. 70% of
these malicious samples (i.e., 535 apps) were originally collected
from the Google Play Store and belong to different malware fami-
lies such as: “jiagu”, “blacklister” and “dnotua”. Overall, our results
show that GUIDED RETRAINING is an effective method to reduce the
misclassifications of state-of-the-art Android malware detectors.

Our contributions can be summarised as follows:

e We propose to address the malware detection problem in
two steps: the first step deals with the detection of the easy
samples, and the second step is intended for the difficult-to-
detect apps;

e We design a new technique, GUIDED RETRAINING, that im-
proves the classification of the difficult-to-detect apps by
yielding contrasted representations;

e We validate the effectiveness of our method on four state-of-
the-art Android malware detectors;

e We make our code and dataset publicly available at: https:
//github.com/Trustworthy-Software/GuidedRetraining

2 APPROACH
2.1 Overview

Our method aims to leverage deep learning techniques in order
to boost the performance of a binary base classifier. We present
in Figure 1 an overview of our method. The first step consists
of training a base classifier on the whole training dataset. Then,
we leverage the prediction probabilities of the base classifier to
split the dataset into two subsets: easy and difficult samples. The
difficult samples are used to train an auxiliary classifier via our
GUIDED RETRAINING method. The motivation behind the auxiliary
classifier is to obtain a "specialised classifier" that will improve the
performance on difficult samples.

Given a new sample, if it is identified as an easy sample, it will be
predicted by the base classifier. Otherwise, the prediction decision
will be made by the auxiliary classifier that is trained on the difficult
samples via our GUIDED RETRAINING method.

More specifically, the overall process of our approach can be
summarised as follows:

(1) Train a base classifier on the training set (step 1 in Figure 1)
(2) Use this classifier to collect the “difficult” samples (i.e., those
samples from the training set that are close to the decision
boundary of the trained classifier). This is illustrated in step 2
in Figure 1; Concretely, to do this we apply the classifier on

https://github.com/Trustworthy-Software/GuidedRetraining
https://github.com/Trustworthy-Software/GuidedRetraining

Guided Retraining to Enhance the Detection of Difficult Android Malware

[Step 1: The base Step 2: Difficult samples identification
ifier training 2.1: ifying the p

Training \Train Base alidation Predict , Prediction Probability
Dataset Classifier Dataset Classifier probabilities threshold

2.2: Splitting the datasets
Difficult
Dataset
Auxiliary
Classifier

training or test Base | Predict Prediction _Probability
Dataset Classifier probabilities threshold

Step 3: Guided Retraining
Difficult SubSet Supervised Contrastive
for Training Learning
Final predictions Easy Base oredictions
Dataset Classifier
Test Base |Predict, Prediction _Probability + Final
Datase Classifiel probabilities threshold predictions
Difficult Augxiliary Predictions
Dataset, Classifier

Embeddings

Figure 1: An overview of our approach

its own training set (which is uncommon, but useful here to
identify the “difficult” samples).

(3) Devise a new embedding, specialized to contrast “difficult
goodware” from “difficult malware” (step 3 in Figure 1).

(4) Train another classifier on the devised embeddings of the
difficult samples in the training set. This classifier is the
auxiliary classifier (step 3 in Figure 1).

To use our approach on a new sample: the sample would first
be classified by the base classifier. If it turns out this is a difficult
sample, then (and only then), we would instead use the auxiliary,
specialized, classifier. In the following, we describe the main steps
of our approach which are: The base classifier training, Difficult
samples identification, and GUIDED RETRAINING.

2.2 The Base Classifier Training

Our approach is designed to boost the performance of an existing
binary classifier that we denote as the base classifier. The type of this
classifier is not important, but ideally it should be able to output the
prediction probabilities, i.e., not only a binary classification (such
as malware or benign) but a value, typically between 0 and 1, that
indicates the likelihood that a given sample is a malware. If the
classifier does not generate prediction probabilities, we propose
other solutions in Section 3.5.

The first step consists in splitting the dataset into three subsets:
training, validation, and test. We train the base classifier using all
the samples in the training subset.

2.3 Difficult Samples Identification

The aim of this step is to identify the samples that are “difficult” to
predict by the base classifier. The criteria we use to identify these
samples is their probabilities of prediction.

In a binary classification experiment, if the model is confident
about the label of a given sample, it assigns a high prediction proba-
bility to the class that is associated with that label (i.e., a probability
of prediction that is close to 1). Otherwise, samples from any of the
two classes get similar probabilities of prediction (i.e., the probabili-
ties of prediction for the two classes are close to 0.5). The predicted
labels are then decided based on the probabilities of predictions.
Generally, when the probability of prediction for the positive class

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

(or the negative class) is higher than 0.5, the classifier predicts the
sample as positive (or negative). Since the probability of prediction
for the negative class can be deduced from the probability of pre-
diction of the positive class (i.e., the two probabilities sum up to 1),
we consider only the probability of prediction of the positive class
in the following, and we denote it p.

In our approach, we leverage the probabilities of prediction to
split a dataset into easy and difficult subsets. After it is trained,
the base classifier would assign either a very high or a very low
probability of prediction p to the samples that it can predict their
labels with a high confidence. Specifically, if p is very high, the
base classifier is confident that the sample belongs to the positive
class. Conversely, if p is very low, the classifier is confident that the
sample belongs to the negative class. If a given sample is attributed
a very high or a very low probability of prediction, we consider
it as an easy sample. Otherwise, it is considered to belong to the
difficult subset.

We postulate that easy and difficult subsets have the following
properties:

Easy subset: Applying a base classifier on the samples of this
subset will yield only a few prediction errors.

Difficult subset: Applying a base classifier on the samples of
this subset will mostly yield prediction errors.

2.3.1 On Applying the Base Classifier on Its Own Training Set. In
practice, to identify difficult and easy samples, we apply the base
classifier on its own training set, i.e., we collect the prediction prob-
abilities to decide whether the samples are easy or difficult. We
acknowledge that using a trained model (i.e., the base classifier) on
its own training set is uncommon, and would be absurd in most
cases. Here, however, we only do it to identify which samples are
close to the decision boundary of the classifier (i.e., when the clas-
sifier “is unsure”), and later to improve the training on difficult
samples by learning new embeddings (Cf. Section 2.4). It is impor-
tant to note that this design conforms to traditional ML processes
where the training set is clearly separated from the test set (ie.,
there is no data leakage).

2.3.2 Identifying the Probability Thresholds. From the previous
step, our base classifier has attributed a probability of prediction to
each sample in the training and validation datasets. The next step
consists of tagging each sample in the dataset as easy or difficult
based on its probability of prediction. To this end, we need to
identify two thresholds for considering a sample as easy or difficult.
Specifically, we rely on one probability threshold to decide whether
the prediction probability p of a given sample is high enough to
consider that sample as easy (i.e., in this case the sample is an easy
positive since p is high). Similarly, when the prediction probability
p of a given sample is small, we need another probability threshold
to decide whether p is small enough to tag the sample as easy (i.e.,
in this case the sample is an easy negative).

We rely on the validation dataset to determine the values of
the two probability thresholds. Specifically, since the validation
samples are classified into TNs (i.e., True Negatives), FPs (i.e., False
Positives), FNs (i.e., False Negatives), and TPs (i.e., True Positives),
we determine the probability thresholds that satisfy the following
constraints:

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

o The probability threshold for considering a sample as an easy
positive must ensure that the number of false positives in the
easy validation dataset is equal to X% of the total number of FPs
(i.e., FPs predicted by the base classifier on the whole validation
dataset). We denote this threshold th,,.

e The probability threshold for classifying a sample as an easy
negative must guarantee that the number of false negatives in
the easy validation dataset is equal to Y% of the total number of
FNs (i.e., FNs predicted by the base classifier based on the whole
validation dataset). We denote this threshold th,,.

To identify the values of the two probability thresholds, we need
to compute the number of FPs and FNs that we tolerate in the
easy validation dataset. We note these variables tolerated FPs and
toleratedFNs and we calculate their values as follows:

X X FPy, Y X FNy

————toleratedFNs = ———

100 100

where FP, and FN, represent the number of FPs and FNs re-
turned by the base classifier on the whole validation dataset, re-
spectively.

The process of identifying the two probability of prediction
thresholds is adequately detailed in Algorithm 1.

toleratedFPs =

Algorithm 1: Thresholds selection

Input: vDataset, yProbabilities, toleratedFPs, toleratedFNs, indicesOfFPs,
indicesOfFNs

Output: thresholdFPs, thresholdFNs

counterFPs « 0

counterFNs < 0

lenData < vDataset.length()

probasIndicesPos « 0

probasIndicesNeg «— 0

for i « 1,lenData do

if yProbabilities(i) > 0.5 then
| probasIndicesPos « probasIndicesPos + (yProbabilities(i), i)

/] We keep track of the index of the sample to verify that it is not among
the FPs and FNs. We later search that index in indicesOfFPs and
indicesOfFNs lists

else
| probasIndicesNeg < probasIndicesNeg + (yProbabilities(i), i)

probasIndicesPos «— probasIndicesPos.inverselySortProbas()
// The prediction probabilities of the positive samples are sorted in
descending order
probasIndicesNeg «— probasIndicesNeg.sortProbas()
// The prediction probabilities of the negative samples are sorted in ascending
order

lenPos « probasIndicesPos.length()
lenNeg < probasIndicesNeg.length()
for i « 1,lenPos do

if counterFPs == toleratedFPs then

‘ thresholdFPs «— probasIndicesPos[i][0]
break

if probasindicesPos[i][1] in indicesOfFPs then
L | counterFPs « counterFPs + 1
for i < 1,lenNeg do

if counterFNs == toleratedFNs then

‘ thresholdFNs « probasIndicesNeg[i][0]
break

if probasindicesNeg[i][1] in indicesOfFNs then

L | counterFNs < counterFNs + 1

The inputs to this algorithm are the validation dataset, the proba-
bilities of prediction returned by the base classifier on the validation
dataset, toleratedFPs, toleratedFNs, and the indices of the FP, and
FNj in the validation dataset (i.e., we consider that each instance
in the dataset has a unique index, and we denote the lists of the FPs
and FNs indices as indicesOfFPs and indicesOfFNs respectively). To

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

identify the threshold of the positives, we first select all the samples
from the validation dataset that have their p > 0.5 and we sort their
probabilities in descending order. We also keep track of the indices
of these samples in the validation dataset to verify whether they
are predicted as TPs or FPs by the base classifier (i.e., based on in-
dicesOfFPs list). Then, we initialise a counter of the number of FPs
in the easy dataset and we iterate over the sorted samples starting
from the one with the highest probability of prediction. During
each iteration, we first check whether the value of the FPs counter
has reached the number of toleratedFPs, in which case we stop the
iteration and set the th), to the current probability of prediction.
Otherwise, we increment the counter of FPs if the sample has been
predicted as FP by the base classifier.

We apply the same technique to identify the value of negatives
threshold thy,. We select the samples that have their p < 0.5 and
we sort their probabilities in ascending order since the classifier is
confident about the samples with low probabilities of prediction.
Similarly, we keep a counter for the number of FNs that are tolerated
in the easy dataset and we iterate over the sorted samples starting
from the one with the lowest probability of prediction. When the
value of the FNs counter is equal to the value of toleratedFNs, we
stop the iteration. We then set the value of th;, to the probability of
prediction of the last sample in which the iteration stopped.

2.3.3 Splitting the Datasets. After identifying the values of thy, and
thy, we split our datasets into easy and difficult subsets. The easy
dataset contains all the samples whose probabilities of prediction
satisfy:

easyDataset = {x; € dataset | th, 2 pjorth, < pi}

where p; is the probability of prediction of sample x;.

The easy dataset includes all the positive samples whose predic-
tion probabilities are greater than the threshold th,, (i.e., they are
predicted as positives with high confidence by the base classifier).
It also includes the negative samples whose prediction probabili-
ties are smaller than the threshold th, (i.e., they are predicted as
negatives with high confidence by the base classifier).

As for the difficult dataset, it contains all the samples that do not
satisfy the constraints of the easy dataset. Specifically, it includes the
samples whose prediction probabilities are at the same time below
the threshold thp and above the threshold th;, (i.e., the base classifier
is not confident that these samples are positives or negatives). The
samples in the difficult dataset satisfy:

dif ficultDataset = {x; € dataset | thy, < p; < thp}

At the end of this step, we have the training, validation, and test
datasets split into easy and difficult subsets.

2.4 GUIDED RETRAINING

In our approach we make use of Supervised Contrastive Learn-
ing [22] to generate the embeddings of the difficult samples. Con-
trastive Learning is a technique that generates new embeddings of
the dataset in such a way that samples belonging to the same class
are close to each other in the embedding space. Similarly, samples
belonging to different classes are far from each other in the embed-
ding space. While Contrastive Learning [22] has been proposed for
the general case of multi-class classification, we have adapted it to

Guided Retraining to Enhance the Detection of Difficult Android Malware

the special case of having only two classes: malware and benign
(i.e., positive and negative). Supervised Contrastive Learning works
in two stages: First, it generates the embeddings using an Encoder
followed by a Projection Network (we refer to both of them as
the Model). After the training is done, the Projection Network is
discarded and a classifier is trained on the embeddings from the last
layer of the Encoder. This classifier is referred to as the auxiliary
classifier. At the end of the second stage, the samples are classified
into their respective classes. Using Supervised Contrastive Learn-
ing, we aim to create contrasted representations for the samples in
the difficult subsets which would help to better classify them into
their respective classes.

From the previous step (i.e., Section 2.3), we have created two
validation subsets: easy and difficult. By construction, the difficult
validation subset contains most of the misclassified samples yielded
by the base classifier. Specifically, it contains (100 - X)% of the total
number of FPs contained in the whole validation dataset. Likewise,
the number of FNs reaches (100 - Y)% of the total number of FNs
in the validation dataset. The difficult subset for training is also
expected to include similar proportions of FPs and FNs (ie., it
includes most of the prediction errors from the whole training
dataset). We remind that the difficult subsets also contain correctly
predicted samples yielded by the base classifier. In the following,
we use TNy, FP/,, FN{,, and TP/, to refer to TNs, FPs, FNs, and TPs
of the base classifier on the difficult subset for training.

As the title suggests, we propose a method that would guide
the retraining on the difficult samples. Specifically, we aim to help
the Model distinguish between four categories of samples in the
difficult training subset. These categories are: TNy, FP,, FN{., and
TP/.. We present in Figure 2 an overview of our GUIDED RETRAINING
approach.

Since training a binary classifier requires a dataset that contains
samples from two classes (i.e., positives and negatives), we make
use of the different combinations of subsets in the difficult training
subset to help the Model generate more contrasted embeddings.
Specifically, we first train a Model using TP, (i.e., they have posi-
tive real labels) and FP;, (i.e., they have negative real labels), and
we denote it Model;. Basically, we guide Model; to distinguish be-
tween the positive samples that are correctly predicted by the base
classifier and the negative samples that are all misclassified by the
same classifier. Consequently, Model; focuses on learning a con-
trasted representation for the true positives and the false positives
in the difficult subset for training. Then, we train another Model
using TN/, (i.e., they have negative real labels) and FN, (i.e., they
have positive real labels) and we denoted it Model,. This Model
would learn to distinguish between the true negatives and the false
negatives predicted by the base classifier on the difficult subset for
training. Similarly, we train Models on TP/, (i.e., they have posi-
tive real labels) and TN/, (i.e., they have negative real labels), and
Models on FP/, (i.e., they have negative real labels) and FN}, (i.e.,
they have positive real labels).

In summary, the four Models are trained on two difficult training
subsets that the base classifier has: (1) either correctly or incorrectly
classified both of them, (2) correctly predicted one subset and mis-
classified the other subset.

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Difficult training
dataset
Base
classifier

Predict

Train Train Train Train

Model; Model, Models Modely

Difficult training
dataset

iGenerale embeddings

\ ¥ ¥ ¥
Modely Modely Models Modely
Embedding 1 Embedding 2 Embedding 3 Embedding 4
Concatenation
Embedding
Train
Models

Generate embedding

Final embedding

Train
Auxiliary
classifier

Figure 2: An illustration of our GUIDED RETRAINING method

After the four Models are trained, they are used to generate
embeddings for the difficult training subset. Specifically, four em-
beddings are generated for each sample in the difficult training
subset. Then, we concatenate the four feature representations of
each sample into one vector in order to have one embedding per
sample.

To create more contrasted representations for the difficult sam-
ples, we train another Model on the concatenated embeddings and
we denote it Models. Basically, Models is trained on all the samples
from the difficult training subset, which would create fine-grained
contrasted representations based on the embeddings generated by
the four previous Models. Indeed, Models would learn from the
concatenated embeddings of each sample in the difficult subset (i.e.,
regardless if the base classifier has correctly or incorrectly predicted
it) to generate the final feature representations.

The last step in our approach is to train the auxiliary classifier
on the difficult training embeddings that are generated by Models.
This classifier is trained on all the difficult samples in the training
subset. The final classification decision of the difficult samples is
given by the auxiliary classifier. We remind that for the easy dataset,
it is the base classifier that is in charge of predicting their class
labels, as illustrated in Figure 1.

3 EVALUATION SETUP

In this section, we first present the research questions we investi-
gate in our study and the evaluation subjects we use to assess the
effectiveness of our approach. Then, we describe the dataset, the
architecture of both the Models and the auxiliary classifier, and we

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

overview our experimental setup (i.e., models” hyperparameters
and implementation details).

3.1 Research Questions

In our study, we investigate the possibility of selecting and separat-

ing the samples that are most challenging to classify. Specifically,

we aim to identify the difficult subset in a dataset that would contain

samples that yield most of the prediction errors.

e RQ1: To what extent is it feasible to split a dataset into two subsets,
one with fewer prediction errors and one with most errors?

After identifying the difficult subset in a dataset, we assess the
impact of GUIDED RETRAINING on the detection performance and
we compare it to other classic retraining methods.

o RQ2: How effective is GUIDED RETRAINING in improving the classi-
fication results of state-of-the-art malware detectors?

Additionally, we evaluate the effectiveness of Guided Retraining
in detecting new Android malware.

e RQ3: How effective is GUIDED RETRAINING in improving the classi-
fication performance on new Android apps?

Finally, we investigate the impact of the errors thresholds used
to construct the difficult and the easy subsets.

o RQ4: What is the impact of the errors thresholds on the detection
performance of GUIDED RETRAINING?

We note that we have also conducted an ablation study to assess
the importance of GUIDED RETRAINING s components. Due to space
limitation, we provide the results of the study in our repository:
https://github.com/Trustworthy-Software/GuidedRetraining

3.2 Evaluation Subjects

To evaluate the effectiveness of our approach in boosting the per-
formance of base classifiers, we conduct our experiments on classi-
fiers trained to detect Android malware. Specifically, we apply our
method on four state-of-the-art Android malware detectors from
the literature: DREBIN [4], REVEALDROID [15], MAMADROID [31]
(using two variants: MAMADRoID FAMILY and MAMADROID PACK-
AGE), and MALScAN [50] (i.e., two variants: MALSCAN AVERAGE and
Ma1ScaN CoNCATENATE). These detectors have been successfully
replicated [7] in a study that has considered malware detectors
from leading venues in Security, Software Engineering, and Ma-
chine Learning. We present a brief description of the features set
and the ML algorithms used by these approaches in Table 1 and we
refer the reader to the replication study [7] for further details.

Table 1: Evaluation subjects

ML algorithm Features set
DREBIN LinearSVC App Components, Filtered Intents, Hard-
ware Components, Network Addresses, Re-
stricted API Calls, Requested Permissions,
Suspicious API Calls and Used Permissions
REVEALDROID LinearSVC Android API usage, Native Call and Reflec-
tive Features
MaMADRoOID Random Forest | The representation of the abstracted API
calls as Markov Chain
MALScAN KNN Call graphs are represented as social net-
works to conduct centrality analysis

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

3.3 Dataset

We conduct our experiments on a public dataset of Android malware
and benign apps from the literature [8]. It has been collected from
ANDROZO00 [2], which is a growing collection that contains more
than 22 million apps crawled from different markets, including
Google Play. In this dataset, benign apps are defined as apps that
have not been flagged by any antivirus engine from VirusTotal [45].
A sample is labelled as malware if it is flagged by at least two
antivirus engines. The apps in this dataset are created between
2019 and 2020 (i.e., according to their compilation date). In total,
the dataset contains 78 002 malware and 187 797 benign apps.

3.4 Model and Auxiliary Classifier Architectures

In this section, we present the neural network architecture we adopt
for the Models and the auxiliary classifier, which are both based on
the multi-layer perception (MLP).

3.4.1 TheModel. As stated in Section 2, we use Model to refer to
the Encoder and the Projection Network, that we train to generate
contrasted embeddings of the difficult samples. For the Encoder, our
MLP contains five fully connected layers1 that have 2048, 1024, 512,
256, and 128 neurons, respectively. The outputs from each layer are
normalised and passed through a RELU activation function. The
size of the input in the Encoder is not fixed since it depends on the
size of the feature vectors of each approach.

For the Projection Network, we use a two layers MLP? that
receives normalised inputs from the Encoder. The first layer has
64 neurons with a RELU activation function and the output layer
contains 32 neurons. After it is trained, only the embeddings at the
last layer of the Encoder are considered [22]. Consequently, the size
of the feature vectors generated by the Models is 128.

3.4.2 The Auxiliary Classifier. This neural network is used to clas-
sify the samples using the embeddings generated by Models. It
contains five layers with 64, 32, 16, 8, and 2 neurons, respectively.
The RELU activation function is applied to the normalised output
of the first four layers. Since we conduct our experiments on bi-
nary classifiers, the last layer contains two neurons with a Sigmoid
activation function (i.e., to output prediction probabilities for the
two classes).

3.5 Experimental Setup

We conduct our experiments using PyTorch [35] and scikit-learn [37]
libraries. For the base classifiers training step (i.e., Section 2.2), we
split the dataset into training (80%), validation (10%), and test (10%),
and we rely on the implementation of the evaluation subjects from
the replication study [7]. In our experiments, we set the percentage
of FPs and FNs tolerated in the easy dataset (i.e., the values of the
parameters X and Y described in Section 2.3) to 5%. We also study
the impact of these two parameters in Section 4.4.

For training the Models and the auxiliary classifiers, we leverage
a publicly available implementation [43] of Supervised Contrastive
Learning. We set 2000 as the maximum number of epochs, and we

!We were inspired by the Contrastive Learning implementation [43] that relies on
ResNet-50. We have replaced the embedding layer and each of the four basic blocks
with fully connected layers.

2We considered the same number of layers used in the CL implementation [43]

https://github.com/Trustworthy-Software/GuidedRetraining

Guided Retraining to Enhance the Detection of Difficult Android Malware

Table 2: Size of input vectors, the number of samples and the number of FPs and FNs in the test subsets

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Size of input I'\Iumber' of samples in the test dataset Number of FPs and FNs in the test dataset

vectors in the (i.e., benign:18 739 and malware: 7841)

difficult datasets Easy dataset Difficult dataset | Whole dataset | Easy dataset | Difficult dataset

benign malware | benign malware | FPs FNs FPs FNs | FPs FNs
DREBIN 1184063 7824 4146 10915 3695 154 419 7 26 147 393
REVEALDROID 7 882350 6120 5308 12619 2533 90 625 2 37 88 588
MaMaDgroIp FAMILY 65 7770 743 10969 7098 52 734 3 33 49 701
MAMADROID PACKAGE 198916 9642 178 9097 7663 136 322 4 10 132 312
MALSCAN AVERAGE 21986 13856 5621 4883 2220 243 420 25 40 218 380
MALScAN CONCATENATE 87944 13760 5619 4979 2222 187 414 30 33 157 381

stop the training if the optimised metric (i.e., the loss for the Models
and the accuracy for the auxiliary classifier) does not improve after
100 epochs 3. We also set the batch size to the size of the training
dataset divided by 10. Due to the huge size of the input vectors of
some evaluated approaches, we had to divide their training size
by 20, so the dataset could fit into memory. For the learning-rate
hyper-parameter, we set its value to 0.001%. We note that we did
not conduct any fine-tuning of the Models and auxiliary classifiers
hyper-parameters.

Since the evaluated subjects have different feature vector sizes
and leverage different base classifier algorithms, we had to resolve
some issues faced during our experiments which are related to:

3.5.1 The Size of the Input Vectors. We present in the first column
of Table 2 the size of the feature vectors in the difficult datasets of
our evaluation subjects. As we can see, DREBIN and REVEALDROID
leverage huge input vectors that would need massive memory
resources to conduct the training. To solve this issue, we rely on
feature selection methods to select the top best 200 000 features
for both DREBIN and REVEALDROID. Although the performance
might decrease when discarding the other features, this method
can guarantee that the training is feasible.

3.5.2 The Probabilities of Prediction. As we have mentioned in
Section 2.2, our method requires a base classifier that outputs pre-
diction probabilities. This requirement is satisfied for MAMADROID
since the base classifier is Random Forest.

For DREBIN and REVEALDROID, they train an SVM algorithm
that outputs a decision function (i.e., its absolute value indicates
the distance of the sample to the hyper-plan that separates the
two classes). This function that we denote f can take negative and
positive values, and it is unbounded (i.e., it can take any value).
In our experiments, we apply a transformation on the decision
function to obtain prediction probabilities:

pi= fi = fmin

' fmax - fmin
where f;, fmin, fmax> Pmin> and pmax refer to the decision function
value of sample i, the minimum and maximum values of f and the
minimum and maximum values of p respectively. This transfor-
mation converts the positive values of the decision function into

X (Pmax - Pmin) * Pmin

3We apply the early stopping constraint after the models start to converge
“In our preliminary experiments, we tested with three values: 0.05, 0.01 and 0.001. The
best results were reported using the value of 0.001

probabilities that are equal or greater than 0.5 and the negative
values to probabilities smaller than 0.5.

As for MALSCAN variants, they rely on the 1-Nearest Neighbour
classifier that outputs either 0 or 1, which does not enable to ex-
ploit probability distributions for identifying thresholds to separate
easy and difficult samples. Thus, we propose a work-around, where
we train a Random Forest model based on MALScAN features, for
predicting MALScAN outputs. Such a model yields probability dis-
tributions for the test set. We leverage this output to identifying
the sought threshold for splitting the dataset.

4 EVALUATION RESULTS

4.1 ROQ1: To What Extent Is It Feasible to Split a
Dataset into Two Subsets, One with Fewer
Prediction Errors and One with Most Errors?

In this section, we investigate the possibility of identifying the diffi-
cult and easy subsets within a dataset. As introduced in Section 2.3,
we hypothesise that (1) most of the samples in the easy subset
would be correctly classified by the base classifier (i.e., the easy
dataset would yield only a few prediction errors). In contrast, (2)
the difficult subset would be associated with most of the prediction
errors that are yielded when applying the base classifier to the
entire dataset.

We conduct our experiments on the evaluation subjects intro-
duced in Section 3.2. For MAMADROID variants, we directly apply
our method described in Section 2.3 since the base classifiers out-
put prediction probabilities. For DREBIN and REVEALDROID, we
use the technique described in Section 3.5.2 to map the decision
function values returned by the base classifiers (i.e., linear SVM) to
prediction probabilities. As for MALSCAN variants, the 1-NN base
classifier does not output usable prediction probabilities (i.e., the
probabilities are either 0 or 1). We thus rely on the method de-
scribed in Section 3.5.2 for splitting the datasets. We note that most
classifiers described in scikit-learn documentation [38] generate
prediction probabilities or decision function values. Consequently,
when the base classifier does not directly output prediction proba-
bilities, our approach is still feasible using the techniques described
in Section 3.5.2.

We report in Table 2 the size of the easy and difficult subsets
as well as the prediction errors made by the base classifier in each
subset. Overall, we are able to split the test dataset into easy and
difficult subsets for all the evaluation subjects. Indeed, the easy

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

subsets contain few FPs and FNs made by the base classifiers. As for
the difficult subsets, they include most of the misclassified samples
yielded by the base classifiers on the whole test dataset.

We also present in Figure 3 the evolution of the accumulated
FPs and FNs against the prediction probability thresholds on the
test dataset. The graphs that are defined for prediction probabili-
ties smaller than 0.5 represent the accumulated FNs. Similarly, the
accumulated FPs are represented by the graphs that are defined for
prediction probabilities greater than 0.5.

DREBIN

400

300

200

FPs

100 th, @5% of FNs th, @5% of FPs

0.0 0.2 0.4 0.6 0.8 1.0
RevealDroid

th, @5% of FNs th, @5% of FPs
~

FNs FPs
0.0 0.2 0.4 0.6 0.8 1.0
MaMabDroid Family

=)

Accumulated FNs/FPs
(<))
o
o

IS
o
S

N
o
=)

th, @5% of FPs

th, @5% of FNs FPs

o

0.0 0.2 0.4 0.6 0.8 1.0
MaMabDroid Package

FPs

thy, @5% of FPs
th, @5% of FNs
Al

0.0 0.2 0.4 0.6 0.8 1.0

Prediction probabilitv thresholds

Figure 3: The accumulated number of FPs and FNs as a
function of the prediction probability thresholds

From Figure 3, we observe that the accumulated FNs are pos-
itively correlated with the prediction probabilities. As for the ac-
cumulated FPs, they are negatively correlated with the prediction
probabilities. These two observations support our splitting method
since we select the easy samples from the two ends of the graphs,
where the FNs and FPs are low.

RQ1 answer: Splitting the dataset based on the prediction
probabilities indeed leads to two subsets that can be qualified
as easy and difficult: the former subset indeed contains samples
that a base classifier is effective in predicting (i.e., fewer errors),
while the latter subset contains the samples associated to most
misclassifications.

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

4.2 RQ2: How Effective Is GUIDED RETRAINING
in Improving the Classification Results of
State-of-the-Art Malware Detectors?

As we have seen in the previous section, we have created easy and
difficult subsets based on the prediction probabilities of the base
classifiers. We can directly predict the class of the easy samples
using the base classifiers since they make few classification mistakes
on these samples. For the difficult subsets, the prediction errors are
important.

In this section, we investigate the impact of GUIDED RETRAINING
on the detection performance of the base classifiers on the difficult
samples. To that end, we compare the following classifiers:

e BC, which refers to the original base classifiers that are trained
on the whole training dataset;

e RBC: it refers to the original algorithms of the approaches re-
trained only on the difficult subset for training;

e RCrassic, which refers to the use of Contrastive learning (with-
out guiding). We retrain only one Model on a training dataset
(i.e., either the difficult subset or the whole training samples) to
generate the embeddings. Then, we directly train the auxiliary
classifier. This method consists of a trivial retraining that does
not involve any guidance to generate the embeddings. We present
an illustration of this method in Figure 4;

e GUIDED RETRAINING, which refers to our approach (Contrastive
learning + guiding as described in Section 2). We train the clas-
sifiers on the difficult subset for training and evaluate it on the
difficult test samples.

Training Train

Figure 4: The classic retraining method: RClassic

Generate

embedding Embedding Train

Auxiliary
classifier

We define AErrors as the difference between the number of pre-
diction errors made by the original base classifier and the number of
prediction errors from the evaluated classifier. Its value can be pos-
itive or negative. If it is positive, AErrors means that the evaluated
classifier has made more prediction errors than the base classifier.
If AErrors is negative, the evaluated classifier has improved the de-
tection performance by decreasing the number of misclassifications
reported by the base classifier. Its formula is as follows:

AErrors = (FPp + FNy) — (FPec + FNec)

where FPy., FNpc, FPec, and FNgc refer to the FPs and FNs of
the base classifier (i.e., bc) and the evaluated classifier (i.e., ec)
respectively.

In the following, we compare the detection performance of
GUIDED RETRAINING to BC, RBC, and RCraAssIc on the difficult
test subset in Section 4.2.1. We also assess the overall gain in per-
formance by comparing GUIDED RETRAINING to BC, and RCrassIC
on the whole test dataset in Section 4.2.2. We note that BC and RBC
refer to the same classifier when they are evaluated on the whole
test dataset.

Guided Retraining to Enhance the Detection of Difficult Android Malware

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 3: Comparison of the detection performance of BC, RBC, RCLaAssIC, and GUIDED RETRAINING, on the difficult test dataset
and the whole test dataset

Difficult test dataset Whole test dataset
RCrAssIC trained on RCLaAssIC trained on
BC RBC the difficult training subset GUIDED RETRAINING BC the whole training dataset GUIDED RETRAINING
F17) PETOS by ABrr ETOT IRi(r) aBrr TS lpim) AR TS Er(m) FETOS IRy AR ETOS gy (g ape ETOS
(FPs + FNs) reduction reduction reduction (FPs + FNs) reduction reduction
DREBIN 92.44 540 92.45 -1 0.18% 93.33 -63 11.67% 93.44 -69 12.78% 96.28 573 96.52 -36 6.28% 96.74 -69 12.04%
Reveal 85.19 676 85.03 +9 -1.33% 87.18 -72 10.65% 91.44 -248 36.69% 95.28 715 95.89 -87 12.17% 97.00 -248 34.69%
MaMaF 94.46 750 9432 +18 -2.4% 96.31 -232 30.93% 96.55 -264 35.2% 94.76 786 96.36 -221 28.12% 96.64 -264 33.59%
MaMaP 97.07 444 94.84 +356 -80.18% 96.9 +25 -5.63% 97.13 -9 2.03% 97.04 458 96.98 +12 -2.62% 97.11 -9 1.97%
MalscanA 86.02 598 8538 +32 -5.35% 90.81 -194 32.44% 91.83 -243 40.64% 95.72 663 97.28 -241 36.35% 97.30 -243 36.65%
MalscanCO 87.25 538 86.51 -37 6.88% 88.43 -58 10.78% 91.66 -177 32.90% 96.11 601 95.45 +93 -15.47% 97.28 -177 29.45%

4.2.1 RQ2-A: How Effective Is GUIDED RETRAINING in Improving
the Classification on the Difficult Test Subset? We calculate the F1-
score, AErrors, and the percentage of errors reduction for BC, RBC,
RCrassic and GUIDED RETRAINING on the difficult test samples and
we present them in the left part of Table 3 (i.e., Difficult test dataset
column).

We observe that RBC has degraded the detection performance
for four out of six approaches. For RCLAssIC, it has improved the
detection scores for five approaches. However, it has increased the
prediction errors of MaMaP by 5.63%. As for GUIDED RETRAINING,
it has improved the detection performance of all the approaches.
Compared to RCLassIC, the error reduction of GUIDED RETRAINING
is more important and reaches 40.64% for MALSCAN AVERAGE.

We have also repeated our experiments 5-times to verify the
generalisability of our results. Before each run of the experiments,
we randomly shuffle and split our dataset into training, validation,
and test. We present in the left part of Table 4 the average of F1
scores and errors reduction over the five runs of the experiments.

Table 4: Comparison of the detection performance of BC,
RBC, RCrassIc, and GUIDED RETRAINING using 5-times
hold-out evaluation

Difficult test datasets Whole test datasets

RCrassIC GuipED RCrassIC GuipED
BC RBC trained on the RETRAINING BC trained on the RETRAINING
difficult subset whole subset
Errors Errors Errors - Errors Errors
FL (%) | F1() reduction F1(%) reduction F1(%) reduction FL (%) | F1(%) reduction F1(%) reduction

DRE 9336 | 9335 -0.08% | 9411 11.21% |94.18 12.77% 96.42 | 96.70 8.06% 96.85 12.10%
Rev 86.38 | 86.34 -0.67% | 88.37 9.45% 91.31 28.74% 95.36 | 95.87 10.47% |96.69 27.10%
MaMF 94.64 | 94.54 -1.62% | 96.33 28.99% |96.50 32.06% 94.88 | 96.3¢ 25.95% |96.56 30.33%
MaMP 86.77 | 82.49 -18.2% 89.13 14.37% |89.84 15.58% 96.29 | 96.94 13.34% |96.99 14.91%
MalA 86.69 | 86.24 -3.73% 9248 42.82% |92.81 45.19% 95.47 | 97.28 40.03% |97.34 41.06%
MalC 87.81 | 86.54 -13.02% | 89.36 12.94% |92.50 36.71% 95.84 | 95.55 -4.86% |97.25 33.09%

Overall, our previous observations are confirmed by the results
reported in Table 4. GUIDED RETRAINING outperforms BC, RBC and
RCLrassic classifiers and decreases up to 45.19% of the prediction
errors made by the state-of-the art malware detectors on the difficult
test subsets.

4.2.2 RQ2-B: How Effective Is GUIDED RETRAINING in Improving
the Classification on the Whole Test Subset? To assess the detection
performance on the whole test dataset, we leverage GUIDED RE-
TRAINING and the original base classifiers to classify the difficult
and easy test subsets respectively. For the experimental compari-
son, we rely on the base classifiers (i.e., BC) evaluated on the whole
test dataset, and RCrassIc that is trained on the whole training

dataset. We remind that training RBC on the whole training dataset
is equivalent to BC training. Consequently, we compare GUIDED
RETRAINING only to BC and RCLassIc on the whole dataset and we
report our results in the right part of Table 3.

We observe that GUIDED RETRAINING has outperformed RCLAs-
sic and reduced up to 36.65% of the prediction errors made by the
base classifiers.

We also present the results of the five runs of the experiments
in the right part of Table 4. The detection scores reported in Ta-
ble 4 show that GUIDED RETRAINING decreases up to 41.06% of the
prediction errors and outperforms both BC and RCrassIcC on the
whole test dataset.

RQ2 answer: GUIDED RETRAINING boosts the detection per-
formance of the base classifiers. Indeed, it has reduced the
prediction errors made by the base classifiers by up to 45.19%
on the difficult test dataset. Furthermore, GUIDED RETRAINING
results in higher detection performance than RBC and RCras-
sic classifiers.

4.3 RQ3: How Effective Is GUIDED RETRAINING
in Improving the Classification
Performance on New Android Apps?

In this section, we evaluate the detection performance of GUIDED
RETRAINING in a temporally-consistent scenario. Specifically, we
train the base classifiers on apps that are temporally anterior to the
apps in the test set. Since this setting has been reported to be chal-
lenging for Android malware detectors [3, 34], we assess the added
value of GUIDED RETRAINING in enhancing their detection perfor-
mance. We rely on the experimental setup presented in section 3.5,
and we evaluate GUIDED RETRAINING against the base classifiers
on the whole test dataset. We remind that the easy samples are
predicted by the base classifiers, and GUIDED RETRAINING is only
used on the difficult subset. We report our results in columns 1 and
2 of Table 5.

We observe that GUIDED RETRAINING with the hyperparameters
introduced in Section 3.5 (i.e., batch size = (size_data/10) and early
stopping = True) improves the detection performance only for three
approaches. During the training that generates the embeddings, we
observed that many Models do not train for enough epochs due
to the early stopping constraint. Consequently, we investigated

SWe note that we increased the number of epochs for MaMaP auxiliary classifier to
3000 because the difficult dataset was imbalanced

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Table 5: Evaluation of the performance of GUIDED
RETRAINING in enhancing the detection of new Android
malware

GUIDED RETRAINING GUIDED RETRAINING GUIDED RETRAINING
Base classifiers | batch size = (size_data/10) | batch size = (size_data/10) | batch size = (size_data/20)
early stopping = True early stopping = False early stopping = False

Errors Errors Errors Errors

F1(%) (FPs + FNs) F1(%) AErr reduction F1(%) AErr reduction FL(%) AErr reduction
DRE | 85.31 2032 89.03 -479 23.57% 88.83 -450 22.15% 89.58 -547 26.92%
Rev | 89.37 1519 88.80 70 -4.61% 88.64 103 -6.78% 91.42 -230 15.14%
MaMF | 92.72 1061 91.84 153 -14.42% 91.94 132 -12.44% 92.19 99 -9.33%

MaMP | 91.94 1213 | 93.30 -194 18.22% 93.33 -224 18.47% 93.39 -233 19.21%
MalA | 92.77 1090 | 9359 -134 12.29% 93.38 -103 9.45% 93.74 -158 14.50%
MalCO | 92.67 1104 | 9240 49 -4.44% 9237 53 -4.80% 93.89 -189 17.12%

two additional settings to help GUIDED RETRAINING learn better
representations: (1) We removed the early stopping constraint, (2)
We removed the early stopping constraint and decreased the batch
size to the size of the dataset divided by 20. We present the results
of these two settings in columns 3 and 4 of Table 5.

We observe that only removing the early stopping constraint
does not improve the detection performance. However, decreas-
ing the batch size and removing the early stopping constraint (i.e.,
column 4 of Table 5) results in better classifiers. GUIDED RETRAIN-
ING has reduced the detection errors made by state-of-the-art ap-
proaches by up to 26.92%. For MaMaF, the F1 score is still not
improved. We further investigated the case of MaMaF by increasing
the number of epochs to 4000. This setting has helped the approach
to learn better from the dataset and has increased the F1 score to
93.01%. We remind that in this work, we did not fine-tune the hyper-
parameters of GUIDED RETRAINING. We expect the fine-tuning to
further reduce the prediction errors of state-of-the-art classifiers.

RQ3 answer: GUIDED RETRAINING improves the detection
performance of state-of-the-art approaches on new Android
malware and reduces their prediction errors by up to 26.92%.

4.4 RQ4: What Is the Impact of the Errors
Thresholds on the Detection Performance of
GUIDED RETRAINING?

We now investigate the impact of the parameters X and Y described
in Section 2.3 on the detection performance of GUIDED RETRAINING.
We remind that X and Y represent the percentage of FPs and FNs
tolerated in the easy subset, respectively. In the previous experi-
ments, we set their values to 5%, which means we split the datasets
to have only 5% of the FPs and FNs in the easy subsets. To assess
the impact of these two parameters on the detection performance,
we split our datasets into easy and difficult subsets using the fol-
lowing thresholds: 1%, 2%, 5%, 10%, 15%, and 20%. For each of these
thresholds, we report GUIDED RETRAINING errors reduction on the
difficult test datasets in Table 6. We also report the average error
reduction of the four classifiers in Table 6. For fair comparison, we
do not consider the specific cases of MALScAN classifiers since their
probability thresholds are inferred from a method that is not fully
aligned with the initial publication.

We observe that the impact of X and Y on GUIDED RETRAIN-
ING detection performance varies depending on the base classifiers.
Among the evaluated thresholds, only 2% and 5% have resulted in

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

improving the detection performance of the four approaches. Addi-
tionally, the value of 5% has enabled the highest errors reduction
and seems to be the best threshold for splitting a dataset into easy
and difficult subsets. Moreover, the average error reduction shows
that the highest detection performance is achieved when using the
threshold of 5%.

Table 6: The impact of FPs and FNs percentage tolerated in
the easy dataset on the error reduction” of GUIDED
RETRAINING

1% 2% 5% 10% 15% 20%
DREBIN 9.11% 10.09% 12.78% 16.76% -12.06% -39.30%
Reveal 34.46% 34.14% 36.69% 37.23% 44.46% 41.08%
MaMaF 33.46% 32.77% 35.20% 33.24% 38.02% 35.78%
MaMaP -155% 0.67% 2.03% -10.31% -16.29% -18.25%
Average 18.87% 19.42% 21.67% 19.23% 13.53% 4.83%

* We remind that the highest the error reduction, the best is the detection performance

RQ4 answer: The error thresholds may significantly impact
the detection effectiveness of GUIDED RETRAINING. Thus, it is
important to carefully choose the value of these thresholds to
achieve the highest detection performance.

5 RELATED WORK
5.1 The Concept of Difficult Samples

The notion of difficult or hard samples has been discussed in several
previous works. Researchers have attributed different definitions to
this concept depending on its use case. A study [42] has defined the
difficult samples in the context of data imbalance as the samples
that belong to the minority class and overlap with the majority class
in the embedding space. Its authors have proposed a framework
MISO that creates non-overlapping embeddings for the difficult
samples based on anchor instances. ADASYN [18] is an algorithm
that helps learning from imbalanced datasets by focusing more on
the difficult samples during synthetic data generation. Specifically,
ADASYN relies on a weighted distribution of the minority classes
to generate the synthetic samples. Adaboost [14] is an ensemble
learning technique that combines the predictions of a series of base
learners. The basic idea of this technique is that each algorithm in
the series increases the weights associated with the hard samples
(i.e., samples that are incorrectly predicted) reported by the previous
learner. Focal Loss [26] and Dice Loss [24] have been proposed
to modify the weights associated with the hard/difficult samples.
The notion of difficult samples has also been implicitly used in
GANSs [17] where the generator is trained to produce adversary
samples that are difficult to classify by the discriminator.

Our work differs from these related works by considering difficult
samples as the instances on which a base classifier is not confident
about their predictions.

5.2 Retraining ML Models

Retraining is a technique that generally aims to improve the de-
tection performance of the model. It has been defined and adopted
in various ways in the literature. DeltaGrad [48] is proposed to

Guided Retraining to Enhance the Detection of Difficult Android Malware

retrain a model by updating its parameters after adding or deleting
a set of training instances. A Neural Network Tree algorithm [53]
has been proposed, which relies on a retraining technique that
updates the weights of the neural networks to minimise the predic-
tion errors. Similarly, retraining using predicted prior time series
data has been proposed to improve the prediction of Anaerobic
digestion [33]. SURE [13] is a partial label learning technique that
is based on self-training. It introduces the maximum infinity norm
regularisation to generate pseudo-labels for the training samples.
Weighted Retraining [44] is a method that updates the latent space
with new instances and periodically retrains generative models
(e.g., GANs [17]) to improve the optimisation. Model retraining
techniques have also been proposed for medical research [5, 6] and
IoT systems [40].

To tackle the problem of dataset imbalance, a resampling ap-
proach has been proposed to obtain a smaller representative subset
of the negative samples [25]. This method is inspired by hard-
negative mining [12, 16] to select the negative instances that will
be considered during the training. Specifically, the resampling tech-
nique learns adversarial weights for the negative samples that are
then leveraged to determine the size of the negative subset. Fi-
nally, a classifier is trained using both the positive samples and the
selected negative samples.

Since the easy samples are effectively predicted by the base
classifier, our GUIDED RETRAINING method targets the difficult
samples in order to improve their classification and is guided using
the predictions of a base classifier.

5.3 Android Malware Detection

The literature on Android malware lavishes with diverse approaches
that aim to detect malicious applications. In addition to the state-
of-the-art approaches that we have presented in Section 3.2, many
ML-based malware detectors [1, 23, 27, 28, 30, 32, 39, 52] that rely
on hand crafted features have been proposed. Recently, image-
based Android malware detection has also become popular due to
its automatic features extraction [9, 10, 21, 41]. With our GUIDED
RETRAINING method, we aim to enhance the detection performance
of Android malware detectors and reduce their misclassifications.

5.4 Supervised Contrastive Learning for
Malware Detection

Recently, a few studies for malware detection have leveraged Super-
vised Contrastive Learning due to its promising results. IFDroid [49]
is an Android malware family classification approach that relies on
Supervised Contrastive Learning by considering the instances that
belong to the same family as positive samples. Malfustection [29]
is a malware classifier and Obfuscation detector that is based on
semi-supervised contrastive learning. CADE [51] is a concept drift
detection method that relies on Supervised Contrastive Learning
to map input samples into a low-dimensional space. In our work,
we leverage Contrastive Learning to generate the embeddings of
the difficult samples. This process is guided using the predictions
of the base classifier.

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

6 CONCLUSION

To evade detection, attackers devote time and effort to develop ma-
licious software that resemble legitimate programs. Consequently,
many malware are difficult to distinguish from genuine programs,
and thus manage to make their way into application markets. Real-
world software datasets are not perfectly separable into benign
and malware samples due to the presence of malicious programs
that are very similar to legitimate software and vice versa. These
samples are challenging to malware detectors and require sophisti-
cated techniques to achieve a high detection effectiveness. In this
paper, we proposed to split a binary dataset into subsets containing
either easy or difficult samples. The easy samples are efficiently
predicted by a base classifier. For the difficult samples, we propose
a more advanced technique to better differentiate the two classes
(malicious vs benign). Specifically, we leverage Supervised Con-
trastive Learning to generate enhanced embeddings for the difficult
samples. We rely on the predictions of the base classifier on the
difficult samples to guide the retraining that generates the new
representations. Then, we train an auxiliary classifier on the new
embeddings of the difficult samples. We evaluate our method on
four state-of-the-art Android malware detectors, and we show that
GUIDED RETRAINING boosts the detection performance and reduces
the prediction errors by up to 45.19%. We note that our method is
not limited to Android malware detection and can be applied to
other binary classification tasks.

Data Availability: We make our code and dataset publicly avail-
able at https://github.com/Trustworthy-Software/GuidedRetraining

ACKNOWLEDGMENTS

This work was partially supported (a) by the Fonds National de la
Recherche (FNR), Luxembourg, under project Reprocess
C21/1S/16344458, (b) by the University of Luxembourg under the
HitDroid grant, and (c) by the Luxembourg Ministry of Foreign
and European Affairs through their Digital4Development (D4D)
portfolio under project LuxWAyS.

REFERENCES

[1] Fahad Akbar, Mehdi Hussain, Rafia Mumtaz, Qaiser Riaz, Ainuddin Wahid Ab-
dul Wahab, and Ki-Hyun Jung. 2022. Permissions-Based Detection of An-
droid Malware Using Machine Learning. Symmetry 14, 4 (2022), 718. https:
//doi.org/10.3390/sym14040718

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR '16). ACM, New York, NY, USA, 468-471. https://doi.org/
10.1145/2901739.2903508

[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves LeTraon. 2015. Are
Your Training Datasets Yet Relevant?. In Engineering Secure Software and Systems,
Frank Piessens, Juan Caballero, and Nataliia Bielova (Eds.). Springer International
Publishing, Cham, 51-67. https://doi.org/10.1007/978-3-319-15618-7_5

[4] Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and Konrad
Rieck. 2014. Drebin: Efficient and explainable detection of android malware in
your pocket. In Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS), San Diego, CA. https://doi.org/10.14722/ndss.2014.23247

[5] Mariam Barque, Simon Martin, Jérémie Etienne Norbert Vianin, Dominique

Genoud, and David Wannier. 2018. Improving wind power prediction with

retraining machine learning algorithms. In 2018 International Workshop on Big

Data and Information Security (IWBIS). 43-48. https://doi.org/10.1109/IWBIS.

2018.8471713

Cheng-Yi Chiang, Nai-Fu Chang, Tung-Chien Chen, Hong-Hui Chen, and Liang-

Gee Chen. 2011. Seizure prediction based on classification of EEG synchronization

patterns with on-line retraining and post-processing scheme. In 2011 Annual

=

https://github.com/Trustworthy-Software/GuidedRetraining
https://doi.org/10.3390/sym14040718
https://doi.org/10.3390/sym14040718
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/IWBIS.2018.8471713
https://doi.org/10.1109/IWBIS.2018.8471713

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

[7

[

8

=

=
X0

[10]

[11

[12]

[13]

[14

[15]

[16]

(17

[18]

[19]

[20]

[21]

[22]

[23

[24]

International Conference of the IEEE Engineering in Medicine and Biology Society.
7564-7569. https://doi.org/10.1109/IEMBS.2011.6091865

Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021.
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware
Detection. Empirical Software Engineering 26, 4 (2021), 1-53. https://doi.org/10.
1007/5s10664-021-09955-7

Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2023. As-
sessing the opportunity of combining state-of-the-art Android malware detectors.
Empirical Software Engineering 28, 2 (2023), 22. https://doi.org/10.1007/s10664-
022-10249-9

Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F.
Bissyandé, and Jacques Klein. 2021. DexRay: A Simple, yet Effective Deep Learn-
ing Approach to Android Malware Detection Based on Image Representation
of Bytecode. In Deployable Machine Learning for Security Defense, Gang Wang,
Arridhana Ciptadi, and Ali Ahmadzadeh (Eds.). Springer International Publishing,
Cham, 81-106. https://doi.org/10.1007/978-3-030-87839-9_4

Yuxin Ding, Xiao Zhang, Jieke Hu, and Wenting Xu. 2020. Android malware
detection method based on bytecode image. Journal of Ambient Intelligence and
Humanized Computing (2020), 1-10. https://doi.org/10.1007/s12652-020-02196-4
Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Heterogeneous Temporal Graph Transformer:
An Intelligent System for Evolving Android Malware Detection. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (Virtual
Event, Singapore) (KDD 21). Association for Computing Machinery, New York,
NY, USA, 2831-2839. https://doi.org/10.1145/3447548.3467168

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
2009. Object detection with discriminatively trained part-based models. IEEE
transactions on pattern analysis and machine intelligence 32, 9 (2009), 1627-1645.
https://doi.org/10.1109/TPAMI.2009.167

Lei Feng and Bo An. 2019. Partial Label Learning with Self-Guided Retraining.
Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019),
3542-3549. https://doi.org/10.1609/aaai.v33i01.33013542

Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997), 119-139. https://doi.org/10.1006/jcss.1997.1504

Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight,
Obfuscation-Resilient Detection and Family Identification of Android Mal-
ware. ACM Trans. Softw. Eng. Methodol. 26, 3, Article 11 (Jan. 2018), 29 pages.
https://doi.org/10.1145/3162625

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
580-587. https://doi.org/10.1109/CVPR.2014.81

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Genera-
tive Adversarial Nets. In Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.),
Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). 1322-1328. https://doi.org/10.1109/IJCNN.2008.4633969

Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jingwei Lei, Wenqiang Wan,
Jiabin Wang, Qi Xiong, and Fudong Shao. 2019. <i>a Cyber</i>: Enhancing
Robustness of Android Malware Detection System against Adversarial Attacks on
Heterogeneous Graph Based Model. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 609-618. https:
//doi.org/10.1145/3357384.3357875

Ming Huang, Fuzhen Zhuang, Xiao Zhang, Xiang Ao, Zhengyu Niu, Min-Ling
Zhang, and Qing He. 2019. Supervised representation learning for multi-label
classification. Machine Learning 108, 5 (2019), 747-763. https://doi.org/10.1007/
510994-019-05783-5

T. H. Huang and H. Kao. 2018. R2-D2: ColoR-inspired Convolutional NeuRal
Network (CNN)-based AndroiD Malware Detections. In 2018 IEEE International
Conference on Big Data (Big Data). 2633-2642. https://doi.org/10.1109/BigData.
2018.8622324

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised
Contrastive Learning. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 18661-18673. https://proceedings.neurips.cc/paper/
2020/file/d89a66¢7c¢80a29b1bdbab0f2ala94af8-Paper.pdf

Vasileios Kouliaridis and Georgios Kambourakis. 2021. A Comprehensive Survey
on Machine Learning Techniques for Android Malware Detection. Information
12, 5 (2021). ht;‘ps://doiorg/10.3390/inf012050185

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. 2020.
Dice Loss for Data-imbalanced NLP Tasks. In Proceedings of the 58th Annual

[25

[26

[27]

™~
&,

[29

[30

[31

[32

[33

[34

=
=

N
furg

[42

[43

[44

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, Online, 465-476. https://doi.org/10.18653/v1/2020.acl-main.45
Yi Li and Nuno Vasconcelos. 2020. Background data resampling for outlier-aware
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 13218-13227. https://doi.org/10.1109/CVPR42600.2020.01323
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2017.324
K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. 2020. A Review of Android
Malware Detection Approaches Based on Machine Learning. IEEE Access 8 (2020),
124579-124607. https://doi.org/10.1109/ACCESS.2020.3006143

Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning
for Android Malware Defenses: A Systematic Literature Review. ACM Comput.
Surv. 55, 8, Article 153 (dec 2022), 36 pages. https://doi.org/10.1145/3544968
Mohammad Mahdi Maghouli, Mohamadreza Fereydooni, Monireh Abdoos, and
Mojtaba Vahidi-Asl. 2021. Malfustection: Obfuscated Malware Detection and
Malware Classification with Data Shortage by Combining Semi-Supervised and
Contrastive Learning. arXiv preprint arXiv:2111.09975 (2021). https://doi.org/10.
48550/arXiv.2111.09975

Arvind Mahindru and AL Sangal. 2021. MLDroid—framework for Android mal-
ware detection using machine learning techniques. Neural Computing and Appli-
cations 33, 10 (2021), 5183-5240. https://doi.org/10.1007/s00521-020-05309-4
Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In ISOC
Network and Distributed Systems Security Symposiym (NDSS). San Diego, CA.
https://doi.org/10.14722/ndss.2017.23353

Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller. 2021.
Multi-view deep learning for zero-day Android malware detection. journal of
Information Security and Applications 58 (2021), 102718. https://doi.org/10.1016/].
jisa.2020.102718

Jun-Gyu Park, Hang-Bae Jun, and Tae-Young Heo. 2021. Retraining prior state
performances of anaerobic digestion improves prediction accuracy of methane
yield in various machine learning models. Applied Energy 298 (2021), 117250.
https://doi.org/10.1016/j.apenergy.2021.117250

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-
ware Classification across Space and Time. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 729-746.
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
PyTorch. . https://pytorch.org. [Online; accessed 30-August-2022].

Alain Rakotomamonjy. 2017. Supervised Representation Learning for Audio
Scene Classification. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 25, 6 (2017), 1253-1265. https://doi.org/10.1109/TASLP.2017.2690561
scikit learn. . https://scikit-learn.org. [Online; accessed 30-August-2022].

scikit learn. . https://scikit-learn.org/stable/modules/classes.html. [Online;
accessed 30-August-2022].

Tejpal Sharma and Dhavleesh Rattan. 2021. Malicious application detection in
android — A systematic literature review. Computer Science Review 40 (2021),
100373. https://doi.org/10.1016/j.cosrev.2021.100373

Yan Song, Yibin Li, Lei Jia, and Meikang Qiu. 2020. Retraining Strategy-Based
Domain Adaption Network for Intelligent Fault Diagnosis. IEEE Transactions on
Industrial Informatics 16, 9 (2020), 6163-6171. https://doi.org/10.1109/TIL.2019.
2950667

Tiezhu Sun, Nadia Daoudi, Kevin Allix, and Tegawendé F. Bissyandé. 2021. An-
droid Malware Detection: Looking beyond Dalvik Bytecode. In Proceedings of the
36th IEEE/ACM International Conference on Automated Software Engineering Work-
shops (Virtual Event, Australia) (ASE "21). https://doi.org/10.1109/ASEW52652.
2021.00019

Jiachen Tian, Shizhan Chen, Xiaowang Zhang, Zhiyong Feng, Deyi Xiong, Shao-
juan Wu, and Chunliu Dou. 2021. Re-embedding Difficult Samples via Mutual
Information Constrained Semantically Oversampling for Imbalanced Text Classi-
fication. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, Online and Punta
Cana, Dominican Republic, 3148-3161. https://doi.org/10.18653/v1/2021.emnlp-
main.252

Yonglong Tian. 2020. https://github.com/HobbitLong/SupContrast.
accessed 30-August-2022].

Austin Tripp, Erik Daxberger, and José Miguel Hernandez-Lobato. 2020. Sample-
Efficient Optimization in the Latent Space of Deep Generative Models via
Weighted Retraining. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 11259-11272. https://proceedings.neurips.cc/paper/
2020/file/81e3225¢6ad49623167a4309eb4b2e75-Paper.pdf

VirusTotal. . https://www.virustotal.com. [Online; accessed 30-August-2022].
Mike Walmsley, Anna MM Scaife, Chris Lintott, Michelle Lochner, Verlon Et-
sebeth, Tobias Géron, Hugh Dickinson, Lucy Fortson, Sandor Kruk, Karen L

[Online;

https://doi.org/10.1109/IEMBS.2011.6091865
https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/s10664-022-10249-9
https://doi.org/10.1007/s10664-022-10249-9
https://doi.org/10.1007/978-3-030-87839-9_4
https://doi.org/10.1007/s12652-020-02196-4
https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1609/aaai.v33i01.33013542
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1145/3162625
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1145/3357384.3357875
https://doi.org/10.1145/3357384.3357875
https://doi.org/10.1007/s10994-019-05783-5
https://doi.org/10.1007/s10994-019-05783-5
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1109/BigData.2018.8622324
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.3390/info12050185
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.1109/CVPR42600.2020.01323
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1145/3544968
https://doi.org/10.48550/arXiv.2111.09975
https://doi.org/10.48550/arXiv.2111.09975
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.14722/ndss.2017.23353
https://doi.org/10.1016/j.jisa.2020.102718
https://doi.org/10.1016/j.jisa.2020.102718
https://doi.org/10.1016/j.apenergy.2021.117250
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://pytorch.org
https://doi.org/10.1109/TASLP.2017.2690561
https://scikit-learn.org
https://scikit-learn.org/stable/modules/classes.html
https://doi.org/10.1016/j.cosrev.2021.100373
https://doi.org/10.1109/TII.2019.2950667
https://doi.org/10.1109/TII.2019.2950667
https://doi.org/10.1109/ASEW52652.2021.00019
https://doi.org/10.1109/ASEW52652.2021.00019
https://doi.org/10.18653/v1/2021.emnlp-main.252
https://doi.org/10.18653/v1/2021.emnlp-main.252
https://github.com/HobbitLong/SupContrast
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://www.virustotal.com

Guided Retraining to Enhance the Detection of Difficult Android Malware

[47

[48

N
o

[50]

Masters, et al. 2021. Practical Galaxy Morphology Tools from Deep Super-
vised Representation Learning. arXiv preprint arXiv:2110.12735 (2021). https:
//doi.org/10.1093/mnras/stac525

Xiaohui Wan, Zheng Zheng, Fangyun Qin, Yu Qiao, and Kishor S. Trivedi. 2019.
Supervised Representation Learning Approach for Cross-Project Aging-Related
Bug Prediction. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). 163-172. https://doi.org/10.1109/ISSRE.2019.00025

Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. DeltaGrad: Rapid
retraining of machine learning models. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 10355-10366.
https://proceedings.mlr.press/v119/wu20b.html

Yueming Wu, Shihan Dou, Deqing Zou, Wei Yang, Weizhong Qiang, and Hai
Jin. 2021. Obfuscation-resilient Android Malware Analysis Based on Contrastive
Learning. arXiv preprint arXiv:2107.03799 (2021). https://doi.org/10.48550/arXiv.
2107.03799

Y. Wy, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin. 2019. MalScan: Fast Market-
Wide Mobile Malware Scanning by Social-Network Centrality Analysis. In 2019

[51

[52

[54

]

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
139-150. https://doi.org/10.1109/ASE.2019.00023

Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept
Drift Samples for Security Applications. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2327-2344. https://www.usenix.org/
conference/usenixsecurity21/presentation/yang-limin

Nan Zhang, Yu an Tan, Chen Yang, and Yuanzhang Li. 2021. Deep learning
feature exploration for Android malware detection. Applied Soft Computing 102
(2021), 107069. https://doi.org/10.1016/j.as0¢.2020.107069

Q. Zhao. 2001. Training and retraining of neural network trees. In I[JCNN’01. In-
ternational Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222),
Vol. 1. 726-731 vol.1. https://doi.org/10.1109/IJCNN.2001.939114

Rui Zhu, Chenglin Li, Di Niu, Hongwen Zhang, and Husam Kinawi. 2018. Android
malware detection using large-scale network representation learning. arXiv
preprint arXiv:1806.04847 (2018). https://doi.org/10.48550/arXiv.1806.04847

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1093/mnras/stac525
https://doi.org/10.1093/mnras/stac525
https://doi.org/10.1109/ISSRE.2019.00025
https://proceedings.mlr.press/v119/wu20b.html
https://doi.org/10.48550/arXiv.2107.03799
https://doi.org/10.48550/arXiv.2107.03799
https://doi.org/10.1109/ASE.2019.00023
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://doi.org/10.1016/j.asoc.2020.107069
https://doi.org/10.1109/IJCNN.2001.939114
https://doi.org/10.48550/arXiv.1806.04847

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 The Base Classifier Training
	2.3 Difficult Samples Identification
	2.4 Guided Retraining

	3 Evaluation setup
	3.1 Research Questions
	3.2 Evaluation Subjects
	3.3 Dataset
	3.4 Model and Auxiliary Classifier Architectures
	3.5 Experimental Setup

	4 Evaluation results
	4.1 RQ1: To What Extent Is It Feasible to Split a Dataset into Two Subsets, One with Fewer Prediction Errors and One with Most Errors?
	4.2 RQ2: How Effective Is Guided Retraining in Improving the Classification Results of State-of-the-Art Malware Detectors?
	4.3 RQ3: How Effective Is Guided Retraining in Improving the Classification Performance on New Android Apps?
	4.4 RQ4: What Is the Impact of the Errors Thresholds on the Detection Performance of Guided Retraining?

	5 Related Work
	5.1 The Concept of Difficult Samples
	5.2 Retraining ML Models
	5.3 Android Malware Detection
	5.4 Supervised Contrastive Learning for Malware Detection

	6 Conclusion
	Acknowledgments
	References

