Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks
Korba, Abdelaziz Amara; BOUALOUACHE, Abdelwahab; Bouziane, Brik et al.
2023In IEEE ICC 2023 - IEEE International Conference on Communications
Peer reviewed
 

Documents


Texte intégral
ICC_2023_CameraReady.pdf
Postprint Auteur (239.18 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G and Beyond; Connected and Automated Vehicles; Security; Zero-day Attacks; Federated learning
Résumé :
[en] Deploying Connected and Automated Vehicles (CAVs) on top of 5G and Beyond networks (5GB) makes them vulnerable to increasing vectors of security and privacy attacks. In this context, a wide range of advanced machine/deep learning-based solutions have been designed to accurately detect security attacks. Specifically, supervised learning techniques have been widely applied to train attack detection models. However, the main limitation of such solutions is their inability to detect attacks different from those seen during the training phase, or new attacks, also called zero-day attacks. Moreover, training the detection model requires significant data collection and labeling, which increases the communication overhead, and raises privacy concerns. To address the aforementioned limits, we propose in this paper a novel detection mechanism that leverages the ability of the deep auto-encoder method to detect attacks relying only on the benign network traffic pattern. Using federated learning, the proposed intrusion detection system can be trained with large and diverse benign network traffic, while preserving the CAVs’ privacy, and minimizing the communication overhead. The in-depth experiment on a recent network traffic dataset shows that the proposed system achieved a high detection rate while minimizing the false positive rate, and the detection delay.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Korba, Abdelaziz Amara
BOUALOUACHE, Abdelwahab ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Bouziane, Brik;  University of Bourgogne, France > DRIVE
Rahal, Rabah;  Badji Mokhtar Annaba University, Algeria > LRS
Ghamri-Doudane, Yacine;  University of La Rochelle, France > L3I
Senouci, Sidi Mohammed;  University of Bourgogne > DRIVE
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks
Date de publication/diffusion :
2023
Nom de la manifestation :
IEEE ICC 2023 - IEEE International Conference on Communications
Date de la manifestation :
from 28-05-2023 to 01-06-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE ICC 2023 - IEEE International Conference on Communications
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Disponible sur ORBilu :
depuis le 17 août 2023

Statistiques


Nombre de vues
261 (dont 19 Unilu)
Nombre de téléchargements
279 (dont 4 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu