Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Towards a peer-to-peer residential short-term load forecasting with federated learning
DELGADO FERNANDEZ, Joaquin; POTENCIANO MENCI, Sergio; PAVIĆ, Ivan
2023In Proceedings of the 2023 IEEE Belgrade PowerTech
Peer reviewed
 

Documents


Texte intégral
Towards_a_peer-to-peer_residential_short-term_load_forecasting_with_federated_learning.pdf
Postprint Éditeur (782.61 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Federated Learning; Peer-to-Peer; Clustering; K-means; Agent-Based Modelling; Short-Term Load Forecasting
Résumé :
[en] The inclusion of intermittent and renewable energy sources has increased the importance of demand forecasting in the power systems. Smart meters play a critical role in modern load forecasting due to the high granularity of the measurement data. Federated Learning can enable accurate residential load forecasting in a distributed manner. In this regard, to compensate for the variability of households, clustering them in groups with similar patterns can lead to more accurate forecasts. Usually, clustering requires a central server that has access to the entire dataset, which collides with the decentralized nature of federated learning. In order to complement federated learning, this study proposes a decentralized Peer-to-Peer strategy that employs agent-based modeling. We evaluate it in comparison to a typical centralized k-means clustering. To create clusters, we compare Euclidian and Dynamic time warping distances. We employ these clusters to build short-term load forecasting models using federated learning. Our results reveal the possibility of using Peer-to-Peer clustering along with simple Euclidean distances and Federated Learning to obtain highly performant load forecasting models in a fully decentralized setting.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Ingénierie électrique & électronique
Gestion des systèmes d’information
Auteur, co-auteur :
DELGADO FERNANDEZ, Joaquin  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
POTENCIANO MENCI, Sergio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
PAVIĆ, Ivan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Towards a peer-to-peer residential short-term load forecasting with federated learning
Date de publication/diffusion :
09 août 2023
Nom de la manifestation :
2023 IEEE Belgrade PowerTech
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Belgrade, Serbie
Date de la manifestation :
25-29 June 2023
Titre de l'ouvrage principal :
Proceedings of the 2023 IEEE Belgrade PowerTech
Maison d'édition :
IEEE
ISBN/EAN :
978-1-6654-8778-8
Pagination :
6
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 814654 - MDOT - Medical Device Obligations Taskforce
Projet FnR :
FNR13342933 - Paypal-fnr Pearl Chair In Digital Financial Services, 2019 (01/01/2020-31/12/2024) - Gilbert Fridgen
Intitulé du projet de recherche :
Medical Device Obligations Taskforce
Organisme subsidiant :
CE - Commission Européenne
FNR - Fonds National de la Recherche
Union Européenne
Disponible sur ORBilu :
depuis le 14 août 2023

Statistiques


Nombre de vues
199 (dont 29 Unilu)
Nombre de téléchargements
9 (dont 9 Unilu)

citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu