DELGADO FERNANDEZ, J., BARBEREAU, T. J., & PAPAGEORGIOU, O. (2024). Agent-based Model of Initial Token Allocations: Simulating Distributions post Fair Launch. ACM Transactions on Management Information Systems. doi:10.1145/3649318 Peer reviewed |
Sprenkamp, K., DELGADO FERNANDEZ, J., Eckhardt, S., & Zavolokina, L. (2024). Overcoming intergovernmental data sharing challenges with federated learning. Data and Policy, 6 (27). doi:10.1017/dap.2024.19 Peer Reviewed verified by ORBi |
HORNEK, T., POTENCIANO MENCI, S., DELGADO FERNANDEZ, J., & PAVIĆ, I. (2024). Comparative Analysis of Baseline Models for Rolling Price Forecasts in the German Continuous Intraday Electricity Market. In Volume 38: Energy Transitions toward Carbon Neutrality: Part I. Stockholm, Sweden: Scanditale AB. doi:10.46855/energy-proceedings-10885 Peer reviewed |
NGUYEN, Q. V., POTENCIANO MENCI, S., & DELGADO FERNANDEZ, J. (2024). Literature review for large-scale load forecasting with large volume of smart-meter data [Paper presentation]. 16th International Conference on Applied Energy, Niigata, Japan. Peer reviewed |
AMARD, A., DELGADO FERNANDEZ, J., BARBEREAU, T. J., FRIDGEN, G., & SEDLMEIR, J. (10 December 2023). Federated Learning in Migration Forecasting [Paper presentation]. ICIS 2023. Editorial reviewed |
DELGADO FERNANDEZ, J. (2023). Breaking data silos with Federated Learning [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/57042 |
DELGADO FERNANDEZ, J., POTENCIANO MENCI, S., & PAVIĆ, I. (2023). Towards a peer-to-peer residential short-term load forecasting with federated learning. In Proceedings of the 2023 IEEE Belgrade PowerTech (pp. 6). IEEE. doi:10.1109/PowerTech55446.2023.10202782 Peer reviewed |
Sprenkamp, K., DELGADO FERNANDEZ, J., Eckhardt, S., & Zavolokina, L. (2023). Federated Learning as a Solution for Problems Related to Intergovernmental Data Sharing. In Proceedings of the 56th Hawaii International Conference on System Sciences (pp. 10). Peer reviewed |
LEE, C. M., DELGADO FERNANDEZ, J., POTENCIANO MENCI, S., RIEGER, A., & FRIDGEN, G. (03 January 2023). Federated Learning for Credit Risk Assessment [Paper presentation]. Proceedings of the 56th Hawaii International Conference on System Sciences, Maui, Hawaii, United States. Peer reviewed |
DELGADO FERNANDEZ, J., POTENCIANO MENCI, S., LEE, C. M., RIEGER, A., & FRIDGEN, G. (15 November 2022). Privacy-preserving federated learning for residential short-term load forecasting. Applied Energy, 326. doi:10.1016/j.apenergy.2022.119915 Peer Reviewed verified by ORBi |
DELGADO FERNANDEZ, J., BARBEREAU, T. J., & PAPAGEORGIOU, O. (2022). Agent-based Model of Initial Token Allocations: Evaluating Wealth Concentration in Fair Launches. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/51934. doi:10.48550/arXiv.2208.10271 |