Article (Périodiques scientifiques)
High-Definition Maps: Comprehensive Survey, Challenges and Future Perspectives
ELGHAZALY, Gamal; FRANK, Raphaël; Harvey, Scott et al.
2023In IEEE Open Journal of Intelligent Transportation Systems
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
OJ_ITS_2023.pdf
Postprint Auteur (16.85 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Autonomous Driving; High-Definition Maps; Intelligent Transportation Systems
Résumé :
[en] In cooperative, connected, and automated mobility (CCAM), the more automated vehicles can perceive, model, and analyze the surrounding environment, the more they become aware and capable of understanding, making decisions, as well as safely and efficiently executing complex driving scenarios. High-definition (HD) maps represent the road environment with unprecedented centimetre-level precision with lane-level semantic information, making them a core component in smart mobility systems, and a key enabler for CCAM technology. These maps provide automated vehicles with a strong prior to understand the surrounding environment. An HD map is also considered as a hidden or virtual sensor, since it aggregates knowledge (mapping) from physical sensors, i.e. LiDAR, camera, GPS and IMU to build a model of the road environment. Maps for automated vehicles are quickly evolving towards a holistic representation of the digital infrastructure of smart cities to include not only road geometry and semantic information, but also live perception of road participants, updates on weather conditions, work zones and accidents. Deployment of autonomous vehicles at a large scale necessitates building and maintaining these maps by a large fleet of vehicles which work cooperatively to continuously keep maps up-to-date for autonomous vehicles in the fleet to function properly. This article provides an extensive review of the various applications of these maps in highly autonomous driving (AD) systems. We review the state-of-the-art of the different approaches and algorithms to build and maintain HD maps. Furthermore, we discuss and synthesise data, communication and infrastructure requirements for the distribution of HD maps. Finally, we review the current challenges and discuss future research directions for the next generation of digital mapping systems.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ELGHAZALY, Gamal  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Harvey, Scott;  Luminar Technologies
Safko, Stefan;  Luminar Technologies
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
High-Definition Maps: Comprehensive Survey, Challenges and Future Perspectives
Date de publication/diffusion :
14 juillet 2023
Titre du périodique :
IEEE Open Journal of Intelligent Transportation Systems
eISSN :
2687-7813
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR15354216 - Always Up-to-date High Definition Map, 2020 (01/03/2021-29/02/2024) - Raphael Frank
Disponible sur ORBilu :
depuis le 13 août 2023

Statistiques


Nombre de vues
422 (dont 17 Unilu)
Nombre de téléchargements
1071 (dont 7 Unilu)

citations Scopus®
 
78
citations Scopus®
sans auto-citations
76
citations OpenAlex
 
77

Bibliographie


Publications similaires



Contacter ORBilu