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ABSTRACT In cooperative, connected, and automated mobility (CCAM), the more automated vehicles
can perceive, model, and analyze the surrounding environment, the more they become aware and capable
of understanding, making decisions, as well as safely and efficiently executing complex driving scenarios.
High-definition (HD) maps represent the road environment with unprecedented centimetre-level precision
with lane-level semantic information, making them a core component in smart mobility systems, and a key
enabler for CCAM technology. These maps provide automated vehicles with a strong prior to understand the
surrounding environment. An HD map is also considered as a hidden or virtual sensor, since it aggregates
knowledge (mapping) from physical sensors, i.e. LiDAR, camera, GPS and IMU to build a model of the
road environment. Maps for automated vehicles are quickly evolving towards a holistic representation of the
digital infrastructure of smart cities to include not only road geometry and semantic information, but also
live perception of road participants, updates on weather conditions, work zones and accidents. Deployment
of autonomous vehicles at a large scale necessitates building and maintaining these maps by a large fleet
of vehicles which work cooperatively to continuously keep maps up-to-date for autonomous vehicles in
the fleet to function properly. This article provides an extensive review of the various applications of
these maps in highly autonomous driving (AD) systems. We review the state-of-the-art of the different
approaches and algorithms to build and maintain HD maps. Furthermore, we discuss and synthesise data,
communication and infrastructure requirements for the distribution of HD maps. Finally, we review the
current challenges and discuss future research directions for the next generation of digital mapping systems.

INDEX TERMS Autonomous driving, high-definition maps, intelligent transportation systems

I. INTRODUCTION
A. Historical Background
The interest of humans in creating and using maps for
navigation dates back thousands of years [1]. A clay tablet
from around 600 BC depicts the region surrounding Babylon,
showing the Euphrates River, as well as the surrounding
mountains and ocean. In Roman Egypt, Ptolemy published
his scientific treatise, Geographia in 160 including maps
covering various parts of the world and recording their
longitude and latitude lines. Al-Idrisi created a world map
for Roger II of Sicily in 1154. The Renaissance in Europe,
the invention of printing, and the discovery of America have
led to substantial development of geography and mapping.

Furthermore, with the development of mathematical tools to
understand the geometry of the earth, e.g. projections, these
maps became more complex and accurate.

B. Digital Maps
The advent of modern satellite systems and imagery tech-
nology has revolutionized the creation of accurate and de-
tailed digital representations of the world, giving rise to
what we now call digital maps, such as Google Maps,
OpenStreetMaps, Apple Maps, Garmin, and Mapbox. Digital
maps encode road structures and basic semantic information
as well as points of interest (POI). Several methodologies and
techniques exist to extract and recognize geographic features
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needed to build these maps from satellite images [2]. Digital
maps are now an essential tool in our daily life, especially
when integrated with GPS. Indeed, such integration has been
a core component in building a huge number of digital
services, most importantly for navigation and routing. These
maps have been mainly developed to help humans and are
now available in the most recent vehicles to assist human
drivers. However, these maps are limited in accuracy and
precision and update time for AD requirements [3]–[5], in
which the vehicle needs some degree of positional precision
as well as detailed lane-level information.

C. Enhanced Digital Maps
Digital maps have been significantly improved to meet the
requirements of advanced driver assistance system (ADAS)
functions such as lane-keeping assist [6] and adaptive cruise
control (ACC) [7]. Typical features included in these En-
hanced Digital Maps are speed limits, road curvature and
gradient, lane information, as well as traffic signs and traffic
lights [8]. Enhanced digital maps are also called ADAS maps
and are currently an integral part of most modern vehicles
to enable ADAS functions. Although enhanced digital maps
introduced lane-level information, their geometric precision
and the level of semantic details limit their applicability at
higher levels of autonomy. In AD systems, the vehicle is
required to be localized with high precision with respect to
its environment [9], [10], understand the current situation
[11] and plan collision-free trajectories [12]. To reach this
level of autonomy, automated vehicles are required to have
access to maps not only with centimetre-level positional
accuracy and lane-level geometric information but also a 3D
model of the environment, as well as all static and dynamic
features of the road environment.

D. High Definition Maps
The need of the above mentioned requirements gave rise to
what we call nowadays the high-definition maps, or simply
HD maps. Figure 1 highlights the evolution of maps, their
features and usage as well as the information they contain
and their level of precision and details. The strategic research
planning workshop organized by a small group of researchers
at Mercedes-Benz in Stuttgart in 2010, is where HD maps
were born [13].The Bertha Drive Project marked the first
successful use of HD maps in various functions of an AD
system [14]. In this project, fully AD experiments along
the Bertha Benz memorial route have been conducted using
HD maps developed by HERE, one of the project partners
[5], [13]. One of the key outcomes from the Mercedes-
Benz planning workshop is likely the requirement for a
highly detailed and accurate map, which can serve as an
additional sensor to enhance the vehicle’s understanding and
perception of its surroundings. An HD map is sometimes
referred to as the hidden or the virtual sensor, since it
provides the autonomous vehicles with a strong prior to
understand the surrounding environment, even far beyond

what onboard physical vehicle sensors can provide [4],
[15]. It is even considered as the most intelligent sensor in
AD [16]. Furthermore, maps can offer an unlimited range
and therefore, they could improve decisions and situation
awareness, especially in occluded zones [5], [17]. While
most physical sensors used in autonomous vehicles are
vulnerable to environmental conditions, especially cameras
and LiDARs, maps would not fail if kept accurate, consistent
and up-to-date [18]. HD maps are believed to enable the
next generation of automated vehicles, and there is a wide
agreement that these maps will be central to the digital trans-
formation of intelligent infrastructures, as well as strongly
contribute to more sustainable mobility solutions. HD maps
become a crucial component to power vehicles dealing with
complex driving scenarios. They are used to improve vehicle
localization by matching map data with collected sensor data
in real-time [10]. Furthermore, they play an important role
in improving the accuracy and reliability of perception in
automated vehicles perception as they include information
of the various features found in the road environments
[19]. This can help the vehicle accurately recognize and
classify these features. As HD maps contain rich lane-level
information, they can also be used to support the calculation
of efficient, feasible and safe routes and itineraries. Having
information about the capacity and capabilities of roads, such
as the number of lanes, the speed limit, and the presence
of turn lanes. This can be used to calculate routes that are
suitable for the specific vehicle and its capabilities [20],
[21]. Additionally, HD maps can provide a detailed and
accurate representation of the road environment, including
the location and shape of roads, intersections, landmarks,
POIs and many other features that allow one to model
the structure of the environment, understand the driving
context and thus anticipate risks and potential hazards [22].
Furthermore, HD maps can also be used to predict the
likely paths and movements of other road users, such as
pedestrians and other vehicles [23], [24]. These predictions
are possible thanks to the detailed geometric representations
and the rich semantics in HD maps. Moreover, HD maps can
support the planning of feasible and collision-free trajectories
that respect traffic rules [12]. Although, there exist several
surveys that cover the different AD functions, reviewing
those that depend on HD maps are timidly covered in the
state-of-the-art. Part of this paper extensively reviews the
previous works in each of the above-mentioned use cases.

E. Scalable Mapping: Overview of Challenges
During the last decade, there have been tremendous research
and development efforts both from academia and industry
to push the limits towards affordable, self-maintained and
scalable HD maps. However, there are various unsettled chal-
lenges in building HD maps at scale [25]. These challenges
hold up HD maps to attain their full potential and ultimate
goal in autonomous mobility. These challenges fall into one
of the following categories.
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1) Data collection
Data collection for an HD map can be a time-consuming and
labour-intensive process. It typically involves using a combi-
nation of sensors, such as GPS, IMU, LiDARs, and cameras,
to gather detailed information about the environment.

2) Data communication
Data communication involves the transfer of mapping data
from where they are collected to where they are processed to
build an HD map, and finally to where they are consumed,
e.g. by an autonomous vehicle. Mapping vehicles generate
large quantities of data from different sensors that need to be
processed to build and update maps. Handling these data in
real-time from a large number of mapping vehicles is indeed
a challenge.

3) Data processing
Data processing is the step to create an HD map by extracting
the elements and features needed to build it [26]. This
can be a very complex task, especially for large maps,
as it involves aggregating and aligning data from multiple
sources and ensuring that the map is accurate and up-to-
date. Creating HD maps at scale with a large number of
mapping vehicles involved in the mapping process precise
temporal synchronizations must be guaranteed to avoid data
misalignment [27]. Synchronization using the pulse-per-
second (PPS) signal generated by GPS tends to be the
most common approach to have all onboard vehicle sensors
synchronized [28].

4) Map maintenance
Map maintenance is the process of continuously keeping the
HD map up-to-date according to the changes in the road
environment, such as construction sites, road blockages, and
modifications of road connections. Since the road environ-
ment is highly dynamic and undergoes changes, this process
requires frequent data collection and processing efforts.

5) Data security and privacy
Data security and privacy are crucial for HD maps, as they
often contain sensitive information, such as the locations
of buildings and infrastructure. Ensuring that this data is
protected and not misused is a significant challenge.

6) Mapping cost
Mapping cost is an important factor in the process of
creating HD maps. Building maps at large scale necessitates
using a big number of mapping vehicles, each equipped
with an expensive suite of mapping devices with high-
precision sensors. This cost becomes significantly important
when mapping large areas. HD mapping using consumer-
grade sensors is possible, but it comes at the cost of the
sophistication of the mapping algorithms used.

F. Contributions
This paper provides an in-depth overview of HD maps
including a unified model of their layered architecture.

Evolution of Maps

Paper Maps

Digital Maps

Enhanced Digital Maps

High-Definition Maps

▪ Year (1930)

▪ 2D

▪ Road level

▪ Static data

▪ Navigation

▪ Precision > 10m  

▪ Year (1990)

▪ 2D

▪ Road level

▪ Static data

▪ Navigation

▪ Precision 5-10m  

▪ Year (2000)

▪ 2D

▪ Lane level

▪ Static data

▪ ADAS

▪ Precision 50cm  

▪ Year (2013)

▪ 2D/3D

▪ Lane level

▪ Static & dynamic data

▪ ADAS/AD

▪ Precision < 10cm  

FIGURE 1. Evolution timeline of maps and their specifications in terms of
type of data they contain, level of details, their precision and application

Further, the paper highlights the importance of HD maps
in modular AD systems and provides a synthesis of how
they are used in the various AD core functions. Given
the aforementioned challenges of mapping data collection,
communication, processing, security, and costs, this paper
extensively reviews the previous works on building and
maintaining HD maps, including cost-effective solutions as
well as the communication and mapping data requirements
from generation to distribution. Additionally, the paper dis-
cusses the current challenges in each of the above areas
for building and maintaining HD maps. Finally, we shed
some light on the future and next generation of HD maps
for mobility. The main contributions of this work can be
summarized in the following:

• A free-standing overview of HD maps as a background
for the broader community of intelligent transportation
systems.

• A detailed review of the state-of-the-art of HD maps
uses in the various core functions of AD systems.

• A comprehensive review of the different approaches,
methods and algorithms to maintain the different layers
of HD maps and keep them up-to-date.

• Discussion on key challenges and future perspectives
of HD maps in CCAM and beyond.

G. Organization
The objective of this survey paper is to provide a detailed and
extensive review of recent research works in HD maps. In
Section II, we synthesis and analyze relevant survey papers
in the state-of-the-art of AD and HD maps. We further
discuss how the present survey is positioned among previous
works and its contributions. In Section III, we provide an
overview of HD maps as well as a description of the different
layers and the information contained in each. In Section IV,
we provide an extensive review of applications of HD maps
in AD systems. For each component in AD systems, previous
works are classified based on two criteria: (a) which map
data are used (layer) and (b) and what these data are used
for. In Section V, we extensively review different approaches
and algorithms to build HD maps. Section VI is dedicated
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to maintenance of HD maps, where we review the different
methods to keep HD maps up-to-date. Section VII discusses
the different communication infrastructures and protocols
needed for HD maps. In Section VIII, we conclude the paper
by discussing the current challenges of building, maintaining,
and distributing HD maps at scale.

II. RELATED SURVEY WORK
Although there are numerous review papers covering various
AD topics, the vast majority of them do not extensively
address the subject of HD maps in more detail. Yurtsever
et. al [29] presented a comprehensive survey of AD systems
focusing on emerging technologies, the common practices
from high-level system architectures to the different method-
ologies and typical core AD functions. In [29], besides
the review of the various AD core components, namely
localization, perception, planning and control, the mapping
part has been briefly discussed. Further, mapping is often
presented as an integral part of localization, e.g. in the scope
of Simultaneous Localization and Mapping (SLAM) and not
for HD maps in AD. Moreover, the various core components
of AD systems have been the subject of discussions in
several survey papers, for localization [9], [10], perception
[30], [31], scene understanding [11], motion prediction [24],
[32], [33], motion planning and control [12]. Mapping for
autonomous vehicles has been discussed very often in the
context of SLAM [34]–[36]. However, HD maps as a subject
are far more complex and more comprehensive compared to
classical mapping in robotics. Furthermore, the insight of
most of these papers is oriented towards building maps for
robot navigation in unstructured environments. On the other
hand, the environment of autonomous vehicles is highly
structured and subject to traffic rules. HD maps enable
autonomous vehicles to understand and navigate the road
environment while respecting these rules.

The present paper tries to provide a comprehensive and
systematic review of the state-of-the-art of HD maps com-
pared to available surveys that cover either one aspect of
HD maps or provide a very general overview. For instance,
Puente et. al. in [28] reviewed the different technologies
and platforms used in data collection for HD maps, e.g.
Mobile Mapping Systems (MMS). Elhashash et. al. [37]
reviewed the different sensors used to build MMS and
discussed their utility and applications. Ma et. al. [38] moved
a step forward and discussed the different methodologies
and algorithms used to extract road features from the point
clouds generated by MMS. Their work, however, focused
on geometric road features. Similarly, Zheng et. al. [39]
presented an overview of the different methods used to
extract lane-level road geometry as well as a mathematical
model used to represent extracted features. More recently,
a comprehensive survey of the generation algorithms for
the various elements and layers of HD maps and their
formats has been presented in [26]. While the current gen-
eration algorithms for HD maps may have limitations and

fall short of desired performance and accuracy [26], there
are extensive and rapidly advancing research endeavours
focusing on building HD maps, particularly utilizing deep
learning techniques. Reliable algorithms for building HD
maps are considered the main part of the challenge. Building
HD maps at scale involves various aspects, such as data
collection from several vehicles, data processing by building
algorithms, aggregation in cloud servers and distribution to
autonomous vehicles in standardized formats via suitable
communication protocols [40]. Motivated by the fact that the
road environment is highly dynamic and undergoes changes
frequently, the review of Boubakri et. al. [41] has focused
only on the techniques of updating HD maps. The multidisci-
plinary character of HD maps motivated several researchers
to present an overview [5], tutorial [3] and high-level review
papers [4], [15]. The present survey paper differs from the
above-mentioned reviews in three main points. (1) First, we
provide a thorough overview of HD maps and review their
different formats. Furthermore, we adopt a generic definition
of the different static and dynamic layers in HD maps. The
elements in these layers constitute the basis of the taxonomy
used in the rest of the paper to classify previous works in HD
maps. (2) Second, we provide a comprehensive review of the
use cases of HD maps in the different core components of
AD systems, e.g. in localization, perception, routing, motion
prediction and motion planning. In each of these functions,
we synthesize how HD maps are used to improve their
functionality. We systematically classify these works based
on the HD map layer. (3) Finally, we review in detail the
recent research papers focusing on building and updating HD
maps. More precisely, we synthesize and provide a taxonomy
of these works both on sensor data used as well as the
features generated and its corresponding map layer.

III. HD MAPS: AN OVERVIEW
Early HD maps were only extensions of Enhanced Digital
Maps used in ADAS, and they were referred to as prior
maps [14], [43]. The term HD maps is quite recent but now
becomes widely accepted in CCAM industry, including Tier I
automotive companies, map providers, and OEMs. HD maps
encapsulate all necessary information for automated vehicles
to understand the driving environment at a very-high preci-
sion [5]. While generally there is a consensus that HD maps
are a core enabler for CCAM, there are no clear guidelines or
a standard of what information constitutes an HD map, and
how they are represented [44]–[46]. Nevertheless, available
HD maps in the market share common features. Centimetre-
level positional accuracy and the availability of lane-level
geometric and semantic information are the essential features
found in most HD maps [3], [5], [46]. At its most basic
level, an HD map can simply be a set of points and line
segments with accurate positions representing road signs,
lane markings, lane borders, and lane dividers [26]. Today’s
HD maps are becoming more complex due to the require-
ments of AD systems, where data from different sources
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Real time updated map information

Real Time Map

This layer provides updates from learned data from 
experiences enabling predictive driving behavior

Priors Map

Defines how geometric primitives of geometric layer 
are connected 

Road Connectivity

Semantic information about road features (traffic 
lights, road signs, pedestrian, crossing, POIs)

Semantic Map

High-precision lane-level geometric primitives (points, 
lines, multilines, polygons)

Geometric Map

3D environment representation created by raw sensor 
data in the form of raster images or point clouds (e.g.
PCD, LAZ, LAS )

Base Map

FIGURE 2. Six-layers generic model of HD maps

constitute several layers of information about the driving
environment [47]. Breaking down an HD map into multiple
layers allows to have a more structured data representation
of the road environment. This facilitates accessibility by the
different components of an AD system, which requires that
the environment is modelled at different levels of detail.
Furthermore, a layered data representation makes it easy to
build, store, retrieve and maintain the map. The HD map
used in Mercedes-Benz Bertha Drive research project [48]
defined three layers [14]. A two-layered HD map has been
used in the BMW AG experiments, where the first layer was
dedicated to geometric and semantic lane information and
the second one of road/lane markings used for localization
[49]. Similar to the map used in Bertha Drive, TomTom
and HERE also adopted a three-layered data structure for
their HD maps [50], [51]. The data in these three-layered
models somehow represent the lane geometry, road connec-
tion network and a few semantics, but in different standard
formats [5]. The HD Live Map of HERE is composed of
three layers, namely, the Road Model, HD Lane Model, and
HD Localization Model [50]. The Road Model defines road-
level topology and geometric features as well as country-
specific road classification. As the name implies, the HD
Lane Model provides highly-precise lane-level features such
as lane driving direction, lane type, lane boundary, and lane
marking types. These data allow automated vehicles to plan
more comfortable local trajectories. The HD Localization
Model is composed of object-level semantic features such
as traffic signs, traffic lights, and other road features. This
layer helps the vehicle to accurately estimate its position

using object location. Examples of these hierarchical layers
are given in Fig. 2. Similarly, TomTom HD map is composed
of a three-layers model, namely Navigation Data, Planning
Data, and RoadDNA [5]. The latter is used for localization
[52].

There are several ways to represent and store the data
of HD maps. Among existing formats used to represent
HD maps are OpenStreetMap [53], Lanelet2 [54], [55],
OpenDrive [56], Navigation Data Standard (NDS) [57],
Geographic Data Files (GDF) [58], GeoJSON [59] and ESRI
shapefiles [60]. More details about different formats of map
data for AD can be found in [4], [45], [46]. Software tools
are available for conversions between most of these formats
[61]–[64]. Using HD maps to aid automated vehicles in
improving their localization with respect to the environment
has been one of the early motivations for creating such
a geographic database [10]. The principle of map-based
localization is to match observations obtained by the per-
ception system with features included in the HD map. These
features are either geometric (e.g. lane markings) or semantic
map elements (traffic signs, road signs, and POI) [14].
Localization using geometric and semantic features tends to
be challenging, especially in zones in which these features
are sparse [65]. An alternative approach for localization is to
match dense raw sensor data with a 3D spatial representation
of the road environment [66], [67] (e.g. point cloud map).
Although localization based on a dense map layer and raw
sensor data can achieve better pose estimation results [10],
storage and processing requirements tend to be one of the
limitations of this approach. One solution is to use compact
2D/3D representations such as 3D occupancy grid or voxels.
Obviously, having a prebuilt 3D spatial dense layer of the
road environment in HD maps becomes crucial for highly
AD systems, since the accuracy and robustness of local-
ization determines the reliability of the whole system (cf.
Section IV for more details). This motivates map providers
to include a layer with such a representation in their map
hierarchy. TomTom supports their RoadDNA layer with a
2D raster image that converts from a 3D point map [52]. In
addition to its vector map in Lanelet2 format, Autoware, the
open-source AD software uses a separate 3D point cloud map
[68], mainly for localization using the Normal Distribution
Transform (NDT) method [69]. Likewise, Apollo, the open-
source AD software of Baidu uses a prebuilt point cloud
map in their localization system [70] and another vector
map in OpenDrive format [71]. HD maps are now an integral
component of most AD simulation tools to account for more
realistic scenarios [72], [73]. Furthermore, new releases of
several AD datasets come with an HD map (Waymo open
dataset [74], [75], Argo AI Argoverse I [76] and Agroverse
II [77], Motional NuScenes [78], Lyft L5 [23]).

As discussed above, there are several ways to represent
map information used in AD systems including lane-level
details, such as lane boundaries, lane marking types, traffic
direction, crosswalks, driveable area polygons, and inter-
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FIGURE 3. Examples of HD maps from HERE [42].

section annotations. Although the driving environment is
highly dynamic, the data represented in these three layers are
static. A holistic representation of the environment shall also
include real-time traffic information about observed speed,
weather conditions, congestion zones, blocked road zones
(constructions), etc. This section tries to provide a global
overview of the information stored in these layers in a unified
manner. Although most HD map providers have their own
definition and formats, and there is no unique standard yet
for HD maps, we categorize the information contained in
HD maps into six distinct layers as described in Figure 2.

A. Base Map Layer
The base map layer is the foundation of an HD map and
is considered as a reference layer on which all other layers
are built. It contains a highly-accurate 3D geo-spatial repre-
sentation of the environment, such as the location and shape
of roads, buildings, and other structures. A 3D geospatial
model of the road environment is becoming an important
source of information for autonomous vehicles. It is now
common for an HD map to contain a 3D representation of
the environment. The base map layer is typically created
using point clouds from LiDARs and/or images from one
or more cameras, sometimes assisted with GPS/IMU. This
suite of sensors constitutes an MMS that allows to create a
highly accurate and detailed 3D point clouds representing the
environment. Road and lane geometric and semantic features
are extracted from this layer to build other layers in HD
maps. Since this layer contains a dense data representation
of the environment, it plays an essential role in the precise
localization of autonomous vehicles. Several techniques for
point cloud registration allow estimating the vehicle pose
by matching raw sensor data against a point cloud from this
layer. Building and updating this layer is challenging in terms
of data processing and communication requirements [79].

B. Geometric Map Layer
Despite its precise and dense representation of the environ-
ment, the base map layer ability to support understanding
of the environment is limited, due to the lack of meaningful
features in its representation. The geometric layer in the HD
map provides detailed information about the geometry of
the road environment, including the location and shape of
roads, lanes, curbs, and other features. The geometric layer
typically includes information about road width, the number
of lanes, the centerline of each lane, the borders of lanes
in each road, and the elevation of the road surface. It also
includes information about the precise location and shape of
curbs, sidewalks, pedestrian crossings, and both vertical and
horizontal traffic signs. Each of these features is represented
in terms of basic geometric primitives, i.e. points, lines,
multilines, and polygons. For example, the location of a
vertical traffic sign could be represented by a point. A lane
centerline or borders can be represented by a set of line
segments connected to one another, e.g. multiline. Similarly,
a pedestrian crossing can be represented by a polygon.
Geometric features of this layer are created by processing
data of the base map layer. Building the geometric layer from
the base map data typically involves several processing steps,
including road segmentation, extraction of lane information,
road signs, poles, traffic signs, curbs, barriers and road
surface features. This layer provides a highly accurate and
lane-level geometric representation of the road features.
Geometric features in an HD map are essential for various
AD core components, most importantly for precise motion
predictions of dynamic road participants, as well as for safe
planning of geometrically feasible trajectories.

C. Semantic Map Layer
The semantic map layer defines the significance of road
features provided by the geometric map layer. The data
in this layer provide a context as well as meaning to the

6 VOLUME ,



features represented in the map. For example, the semantic
map layer in an HD map contains information such as the
type of road (e.g. highway, residential roads), and lanes (e.g.
change possible, to left or right), their numbers, the direction
of traffic, and whether a lane is for turning or for parking. It
also includes information on speed limits, lane boundaries,
intersections, crosswalks, traffic signs, traffic lights, parking
spaces, bus stops and many other features that are important
to build the contextual representation of the environment.
The semantic map layer allows the autonomous vehicle to
build a detailed situational representation of its environment
and understand the traffic rules, and thus be able to make
correct and safe decisions in different traffic scenarios. In
simple terms, the semantic map layer assigns semantic labels
to road features and objects defined in the geometric map.
For example, a point in the geometric layer is nothing
but an ordered set of coordinates in the map coordinate
reference system. Only the semantic layer defines whether
this point corresponds to a traffic light, yield or stop sign. HD
maps are known to contain rich semantic information. The
semantic layer also associates metadata to road features such
as road curvature, recommended driving speed, and a unique
identifier of each semantic feature. Indeed, semantically rich
HD maps enable autonomous vehicles better understand the
driving situation, and therefore to make complex decisions
in sophisticated scenarios. Nevertheless, building a reliable
and high-fidelity semantic map of the road environment is
not a straightforward process. Several processing steps, not
limited to scene segmentation, object detection, classifica-
tion, pose estimation and mapping are required. With recent
advances in computer vision, deep learning, sensor fusion
and semantic SLAM algorithms, building accurate semantic
maps becomes possible.

D. Road Connectivity Layer
The road connectivity layer describes the topology of the
road network and how the various geometric elements are
connected. Contrary to the standard definition of digital
maps that contains only road-level information and road-
level connectivity, HD maps contains lane-level geometric
and semantic information, thus connectivity between roads
becomes complex, as it defines the connection between
two or more group of lanes. More precisely, this layer
provides the layout and connectivity of roads including lane
borders and centre lines as well as intersections. Lane-level
connectivity information is necessary to plan legal transitions
between roads and lanes as well as plan manoeuvres that
are permitted at each intersection, which is crucial for the
path planning of autonomous vehicles. In simple terms, this
layer defines how the primitives constituting the geometric
layer are connected with each other. These connections
are established by defining sequential pairs of geometric
and semantic elements. Assigning a unique identifier to
each geometric and semantic element makes it possible to
represent this information using a graph data structure, where

each element is represented by an edge and their connection
as a node. The graph structure allows for fast querying and
searching of the map and planning routes efficiently.

E. Priors Map Layer
This layer is also known as the experimental map layer
since it represents and learns information from the past
experiences. It concerns the geometric and semantic elements
in the map that their states changes temporally. Learning the
status of traffic flow and accident zones from data of a fleet
of vehicles allows for a more efficient and predictive driving
behaviors. This layer also acquires and learns information
that aides to predict the behavior of human driving and
the dynamic states of traffic lights at intersections. It also
accommodates temporal road settings, such as the parking
orders, their occupancy and time schedules. For example,
roadside parking places in some cities change during some
week days, predicting the probability of occupancy and the
timing rule that governs a given parking place is derived
from the prior map layer sensor readings of different fleet
vehicles that drive by that place. Learning and predicting
the driving behaviour of road agents could be challenging
due to sociocultural differences between different societies.
Modeling these behaviours from experience is crucial for
universal and scalable AD systems.

F. Real-Time Map Data
The real-time layer in an HD map is a dynamic layer that
provides real-time information about the environment, such
as traffic conditions, road closures, and other events that may
impact the navigation of the autonomous vehicle. This layer
is typically created by combining data from various sources,
such as cameras, sensors, and other connected devices, which
are mounted on the vehicle or located on the roadside.
The data is collected in real-time and is used to update
the HD map, either through crowdsourcing by participating
vehicles or from intelligent infrastructures using specific
communication networks. The real-time layer can include
information such as the location and speed of other vehicles,
the location and status of traffic signals, and the presence of
construction areas or other obstacles and blockages on the
road. This information is crucial for autonomous vehicles
to make safe and efficient driving decisions in real-time to
optimize traffic flow and reduce congestion. Furthermore,
the real-time layer can be used to improve the accuracy
and completeness of the HD map, by providing up-to-date
information about the environment that may not be captured
by the sensors used to create the map. In simple terms,
the real-time layer in HD maps provides a dynamic, up-
to-date representation of the environment. Live updates of
an HD map for dynamic elements are challenging and re-
quire sophisticated intelligent communication infrastructure
and cooperation between multiple actors. Data transmission
between Intelligent Transportation Systems (ITS), HD map
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FIGURE 4. Keyword network visualization resulting from the
VOSViewer [80] analysis of all Google Scholar papers from 2012 to 2022
filtered by the same keywords included in the graph. The thickness of
graph edges and the size of graph nodes quantify the dependency
between keywords and the number of occurrences of keywords,
respectively.

providers and vehicles must be reliable and meet certain
requirements which are covered later in this survey.

IV. HD MAPS IN AD SYSTEM ARCHITECTURES
HD maps provide the AD system with a detailed and
precise representation of the road environment [15]. These
maps contain lane-level geometric, topological and semantic
information necessary for safe and efficient navigation of
autonomous vehicles [14]. Using HD maps in autonomous
vehicles allows them to better understand their surroundings,
plan their routes, and make more accurate driving decisions,
thus ensuring the safety of passengers and other road users.
This section discusses the importance and uses of HD maps
in AD systems. The ultra-precise map data are now an
integral part of most various core components in AD systems
[14]. In order to discuss the importance and uses of HD maps
in AD, we briefly describe the architecture and standard
components of typical modern AD systems. Figure 5 shows
the standard components of an AD system demonstrating
those relying on HD maps. This section begins by briefly
describing the architecture of an AD system and how it
works as well as its various components. The rest of this
section provides an extensive review of the state-of-the-art
on those AD components that rely on HD maps. A keyword
graph constructed based on analysing Google Scholar papers
using the name of AD components as the search keywords
definitely results in a strong dependency of core AD com-
ponents on HD maps.

A. AD System Architecture
Automated vehicles are complex cyber-physical systems in
which different components have to work together to achieve
the overall driving tasks in a robust, reliable and safe way.
While there does not exist a unique architecture of AD
systems [29], we rely in this work on a common and generic
architecture that helps us understand how HD maps are
used to improve the different functions of AD systems.
Likewise any robotic system, an autonomous vehicle can be
considered a cognitive agent, with its three main elements,
(1) a sensing element, (2) a cognitive element and (3) an
action element. Splitting up these elements into an industry-
level AD system results in several components as depicted
in Figure 5. The sensing component in modern AD system
architectures typically includes different sensors such as
IMU, GPS, camera, LiDAR, and radar. A Subset of these
sensors allows the vehicle to know its position with respect to
the environment, i.e. for localization and the remaining sen-
sors are used for perceiving the environment itself. Reading
and pre-processing raw sensor data and making it available
to the rest of the AD system is the role of the sensing
component. In its simplest form, the sensing component
is composed of a set of sensor drivers to read raw sensor
data in real-time. The localization component is one of the
most critical for the whole AD system to function reliably.
Its role is to precisely estimate the position of the vehicle
[9]. Error in localization propagates to the rest of the AD
processing pipeline. Localization is simply a state estimator
that fuses raw sensor data from the sensing component.
Additionally, the availability of a map allows to improve
and robustify localization, especially in zones in which some
of the sensors fail or have degraded performance [10]. In
Section B, we review map-based localization techniques.
Further, we discuss how the base, geometric and semantic
data from an HD map are matched with raw sensor data,
mainly how LiDAR point clouds and camera images are used
to better estimate vehicle pose. The role of the perception
component is to generate an intermediate-level represen-
tation of the current state of the environment, including
information about obstacles and road agents [81], [82].
This representation also includes details about lanes (their
position, borders, markings, and types), traffic signs, traffic
lights, and drivable areas. Computer vision and deep learning
techniques are extensively used for segmentation, clustering
and classification tasks. Furthermore, object-level fusion is
also an essential part of this component. The output of the
perception is a list of tracked objects as well as a semantic
segmentation of the image used for scene understanding.
The geometric and semantic information from an HD map
can also be used to improve object detection and fusion.
Accurate perception is crucial for safety, as perception errors
can affect the quality of information used throughout the
AD system. Therefore, using redundant sources of sensor
data can enhance confidence in the accuracy of perception,
thereby improving overall system robustness. We discuss
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FIGURE 5. Standard components in modern AD system architectures. Five AD core components rely on HD map data.

later in this section, how the information provided by an
HD map can contribute to the confidence, accuracy and
overall robustness of the perception component. The scene
understanding component serves as a bridge between the
abstract mid-level state representation of the environment
given by the perception component and the high-level cog-
nitive components in the AD system [83]. This component
aims to provide a higher-level contextual understanding of
the driving scene by building upon the data provided by both
the HD map and the perception component [82]. Later in this
section, we discuss how these two sources of information
are fused to build a scene representation for understanding
the driving context. Another component in the AD pipeline
that relies on HD maps is the motion prediction component.
It builds on the high-level spatio-temporal representation of
the environment provided by scene understanding to predict
the behaviour of road agents surrounding the vehicle [33].
The role of HD maps in motion prediction is to provide
prior trajectories of each road agent in the scene. Motion
prediction is a highly multi-modal problem in which HD
maps play a key role discussed in detail in this section.
The motion planning component aims to calculate a feasible,
collision-free and safe trajectory of the autonomous vehicle
[12]. This is achieved by optimizing a global shortest path
obtained by a routing algorithm running on HD map data
as well as the predicted trajectories of road agents. Motion
planning also includes a behavioural planning function that
relies on the state of the current scenario defined by detected
objects and the HD map. The control component receives
a planned trajectory and computes control commands for
the steering, brake and acceleration actuation systems [12].
The control component does not explicitly rely on map data,
thus it will not be considered in this survey. Finally, a special
component is used to serve all other components by handling

requests to provide map data as shown in Figure 5. HD map
data are often stored in databases queried by map servers
(local or cloud) to routing, tiling and update requests by a
map client in the vehicle. As the routing element necessitates
special algorithmic treatment, it will be considered in our
survey of applications of HD maps in AD systems.

B. Localisation
The localisation component in AD systems aims to estimate
the position and orientation of the vehicle with respect to
a global reference coordinate system. Its critical role is to
continuously keep high accuracy and robustness of the esti-
mation needed by the successive components in the system
[113]. The precision of localization algorithms determines
the reliability of the entire AD system. The robustness of
localization under inclement weather conditions is a key
requirement of modern AD systems as degraded estimation
performance may lead to severe consequences and potential
damages. The significant research efforts on localization
during the last two decades have witnessed a remarkable
performance, and at the same time have led to a wide
range of assorted approaches. In order to guarantee normal
operating conditions and achieve global system safety, an
autonomous vehicle is required to be localized within 10cm
precision [85], [114]. The vast literature in localization tech-
niques for autonomous vehicles can be allocated into either
of two main categories. The first category assumes prior
knowledge about the vehicle environment, i.g. a map, hence
is referred to as map-based localization [10], [84], [96],
[107], [115]. The other category assumes no prior knowledge
about the environment and aims at building this knowledge
and simultaneously estimating vehicle location, e.g SLAM
based approaches [34], [35]. This section categorizes and
analyses the localization techniques based on the different
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TABLE 1. Different approaches of HD map-based localization and the map data they use.

Contribution Year Geometric Probabilistic Deep Learning Map Layer and Data Used in Localization

Levinson et. al. [84] 2007 - ✓ - Base: 2D reflectivity map built by LiDAR GraphSLAM
Levinson et. al. [85] 2010 - ✓ - Base: Similar to [84] but with cell remittance probability
Schindler et. al. [86] 2013 - ✓ - Geometric: Lane markings against LiDAR extracted features
Schindler et. al. [87] 2013 ✓ - - Geometric: Curbs and lane markings against camera features
Ranganathan et. al. [88] 2013 ✓ - - Geometric: Horizontal signed road markings (direction arrows)
Tao et. al. [89] 2013 - ✓ - Geometric: Map matching of lane markings and Kalman filter
Tao et. al. [90] 2014 ✓ ✓ - Geometric: Fusing lane markings and GPS using EKF
Yoneda et. al. [91] 2015 ✓ - - Geometric: Multilayer line segment extraction and matching
Qu et. al. [92] 2015 ✓ - - Semantic: Georeferenced traffic signs and bundle adjustment
Tao et. al. [93] 2015 - ✓ - Geometric: EKF observation model of lane markings and GPS
Bauer et. al. [94] 2016 - ✓ - Geometric: Map geometry, GPS and odometry fused using PF
Tao et. al. [95] 2017 - ✓ - Geometric: Road center line and GPS data fused using EKF
Zheng et. al. [96] 2017 ✓ - - Semantic: Least square estimate from semantic features poses
Poggenhans et. al. [97] 2018 ✓ - - Geometric: Matching of detected and map lane geometry
Han et. al. [98] 2018 - ✓ - Geometric: PF based matching of visual and lane geometry
Cai et. al. [99] 2018 - ✓ - Geometric: KF fusion of GPS and map and camera lanemarks
Ma et. al. [100] 2019 - ✓ ✓ Semantic: sign map, Geometric: Lane graphs
Engel et. al. [101] 2019 - - ✓ Geometric & Semantic: Map landmarks with DNN and EKF
Ghallabiet. al. [102] 2019 - ✓ - Geometric: lane marking, Semantic: road signs lidar PF
Lu et. al. [103] 2020 - - ✓ Base: Point cloud layer fed to a deep learning model (L3-net)
Barsan et. al. [104] 2020 - - ✓ Base: Lidar scan and intensity map with deep learning
Pauls et. al. [105] 2020 ✓ - - Geometric (lane markings, curbs) & Semantic (signs)
Elfring et. al. [106] 2020 - ✓ - Semantic: PF fusing traffic signs, GPS, odometry, and IMU
Shin et. al. [107] 2020 ✓ - - Geometric: Lanes and guardrail matched using ICP
Wen et. al. [108] 2020 ✓ - - Geometric: (lane markings) & Semantic: (traffic signs)
Zhang et. al. [109] 2021 ✓ - - Geometric & Semantic: Lidar features and optimization
Wang et. al. [110] 2021 ✓ - - Semantic: Visual features and factor graph optimization
Guo et. al. [111] 2021 ✓ - - Geometric: Matching visual features to landmarks the map
Petek et. al. [112] 2022 ✓ - - Geometric: Lane borders & Semantic: Traffic lights

data provided by HD maps. SLAM-based approaches have
a map-building element, thus it will be discussed among
algorithms used to construct HD maps in Section V. As
a rich and precise representation of the environment, HD
maps are considered one of the most suitable prior maps
for localization [116]. We review localization techniques by
analysing and discussing ”which” and ”how” map data are
used to localize autonomous vehicles with respect to their
environment. Localization in its abstract form is a pose
estimation problem that basically amounts to the fusion of
onboard observations from different sensing modalities with
map data. How sensors are fused with map data can be
categorised into three main approaches. the first approach
tries to associate map features with onboard observations
of perception sensors. This association basically amounts to
solving a geometric problem, with the solution being the
position of the autonomous vehicle. The solution is usually
obtained by solving an optimization problem that tends to
optimize the poses from pairwise relative observations and
map elements e.g. using pose graph optimization (PGO)
[117] or iterative closest point (ICP) [107]. This is referred
to as the geometric approach and in some other works

is referred to as the map matching approach [91], [98].
The second approach handles the problem of map-based
localization using probabilistic techniques in the sense that
a belief of pose probability distributions of observations and
map data are used to obtain the accurate belief of vehicle
pose. [87] matched curbs and lane markings with features de-
tected by camera. The resulting residual error from geometric
matching is send as an observation to a KF for vehicle pose
estimation (thus Kalman is for smoothing not probabilistic
localization). GPS has been used for initialization only.

C. Perception
The perception component in an AD system is often linked
with processing raw camera images and LiDAR point clouds
for the detection and tracking, not only of static objects (e.g.
traffic signs and road markings), but also dynamic agents,
e.g. surrounding vehicles, pedestrians, and cyclists [30], [81],
[82]. Perception is one of the critical core functions of an AD
system. Ensuring its reliability and real-time performance is
crucial to ensure collision-free navigation [118], [119] Fus-
ing perception data with the detailed and precise geometric
and semantic information included in the various layers of
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HD maps potentially improves perceptions by focusing on
the most relevant Regions of Interest (ROI) [82], [120]. More
precisely, the geometry of an HD map allows to define an
ROI to filter out point clouds, leaving only those of particular
interest to the perception function, thus simplifying and
improving the computational efficiency of object detectors
[121]. For instance, removing point clouds corresponding to
buildings would avoid unnecessary computations in object
detection. Reliable object detection for AD systems remains
an open challenge mainly in occluded zones and beyond the
reach of onboard sensors [122], [81]. Although the primary
use of HD maps is to improve vehicle localization, they still
could provide useful information to boost the performance
and confidence of detected dynamic objects [19]. Recently
there has been an interest in using HD maps to improve the
perception of autonomous vehicles [118]. Fadadu et. al [123]
used a local rasterized image of HD map as an input to a
deep learning architecture in parallel with raw camera image
and LiDAR point cloud for map-aware object detection.
Yang et. al [120] and Carrillo et. al [124] developed a deep
learning framework for 3D object detection leveraging HD
maps to improve the performance and robustness of state-
of-the-art 3D object detectors. On the other hand, detecting
static objects, e.g. traffic signs and road markings is of
interest to build HD map geometry and semantic features.
This precision contributes to the overall quality of the HD
map, and consequently the AD functions. For instance, errors
in the positions of detected traffic signs and road landmarks
make it difficult to match against their counterparts in the
HD map with strict matching thresholds. Map geometry and
semantics allow defining scene representation models that
facilitate recognising the most relevant obstacles to decision-
making while ignoring those without impact on the current
situation [22]. Matching detected objects against an HD map
makes it possible to identify relevant objects for decision-
making. Perception at this higher level is refereed is referred
to as situation understanding.

D. Scene Understanding
Understanding the driving context is imperative to make
correct and safe decisions by autonomous vehicles. One of
the early motivations of HD maps is to provide autonomous
vehicles with precise and detailed information to help un-
derstand their environment. This information enables the
AD system to understand the current driving situation and
interpret all entities constituting the scene. Geometry and
semantics contained in the map make it possible to build
compact data models and representations of the environ-
ment systematically, thus enabling the vehicle to deal with
complex driving scenarios [125]. More precisely, the scene
understanding component in an AD system, supported by
an HD map’s geometric and semantic information, could
consistently provide a meaningful context of perception
[83]. Beyond the raw object detection, scene understanding
aims at extracting and estimating safety critical information

and making it available to subsequent processing stages
[11]. As discussed earlier in this section, raw perception
mostly deals with object detection, tracking, and fusion,
without considering the context of the object. Projecting
raw perception objects onto the map layers allows building
a comprehensive layout of the driving scene. This layout
sometimes is referred to as the world model [22]. The main
benefit of having such a layout is that it enables matching a
perception object with the semantic features in the map, thus
obtaining a more enriched perception, e.g. a pedestrian on a
crossing and a car in the same lane [22]. Encoding static and
dynamic information of the environment in a unified world
model facilitates the subsequent AD tasks, mainly motion
prediction and planning. Furthermore, HD maps facilitate
the estimation of the drivable area taking into consideration
the adjacent driving lanes. In summary, HD maps provide
information to facilitate scene modelling and understanding,
e.g. by providing complementary information on sidewalks,
pedestrian crossings and drivable paths [100]. They further
include information about local traffic regulations, including
speed limits and priority rules [5]. The higher the precision
of the map geometry and the richer its semantics, the
better the AD system will be at interpreting and interacting
with complex scenarios. Scene representation with unreliable
perception and outdated HD maps may potentially lead to
misinterpretations of the context.

E. Routing
Road-level digital maps assist human drivers in navigating.
The route calculations in these maps cannot go beyond using
road-level connectivity, since these maps do not include
lane-level details. Accurate and optimal driving routes are
necessary for time and energy saving, as well as contributing
to global vehicle safety. Efficient and low-cost drive route
calculation must consider a lane-level model of the environ-
ment [20]. Furthermore, in a highly dynamic environment,
details about the status of the traffic and lane occupancy are
essential to adapt the route dynamically as the autonomous
vehicle navigates in the environment [126]. Considering the
detailed and accurate lane-level information of the HD map
static layers together with the priors and real-time layers,
an efficient dynamic route calculation is possible [127]. For
a routing subsystem in an autonomous vehicle to be able
to calculate a drivable path from the current position to a
set destination, a fresh and up-to-date map must be made
available to the system from the HD map server as depicted
in Fig. 5. Alternatively, as in digital maps, route calculations
could be offered as a service. Upon sending its accurate
position to the HD map server, an optimal route could be
calculated and fed back to the vehicle for supporting the
other core components of the system. Over the last few years,
those routing services have involved taking into account real-
time traffic conditions and energy factors (e.g. most energy
efficient route). For autonomous vehicles, additional factors
can be taken into account, such as routes avoiding complex
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urban environments that are difficult to navigate for ADS, or
routes with a good network coverage to guarantee continuous
connectivity for online services, including the real-time HD
map service [128].

F. Motion Planning
The role of motion planning in an AD system is to generate
feasible, safe, collision-free and energy-efficient trajectories.
The motion planning task typically incorporates trajectory
generation and behaviour planning [12]. Behaviour plan-
ning is a high-level decision-making function that decides
transitions between the different driving states, e.g. lane
change, in-lane vehicle following, decelerating to stop, etc.
To make these transitions safely, a local map tile and
vehicle perception are needed by the behaviour planner to
build a transition model of the vehicle environment. Unlike
navigation in mobile robots, the road environment is highly
structured [129] and all road users have to respect traffic
rules. Generated trajectories for AD are strictly required
to ensure that traffic rules are respected and motion is
within drivable road areas. There exist different approaches
for motion planning for autonomous vehicles, they all rely
somehow on the geometric and semantic information pro-
vided by HD maps to respect traffic rules [21], [130]–
[132]. In sample-based motion planning approaches, the lane
geometry of the HD map is used to limit the search space
by rejecting candidate trajectories that are not feasible [133].
In optimization-based motion planning, map geometry is
used to define a set of constraints to confine the solution
to a feasible road region [130], [132]. Recently, there has
been an increasing interest in end-to-end frameworks in AD.
One deep-learning architecture could replace all components
of a sophisticated motion planner while guaranteeing the
effectiveness to generate safe and collision-free trajectories
in real-world driving scenarios. An example is the end-to-
end neural motion planner developed by Zeng et. al. [134].
The proposed deep learning pipeline is composed of stages.
The first input point clouds from LiDAR as well as a local
map and outputs an intermediate map-aware representation
of 3D perception. The second stage samples and optimizes
over this representation all physically possible trajectories.
The trajectory of minimum learned cost is chosen as the
system output.

G. Motion Prediction
The driving environment is highly dynamic and involves
different road participants, such as pedestrians, vehicles and
cyclists. Predicting future motions and behaviours of these
road participants is imperative for autonomous vehicles to
build a context-aware representation of their interactive en-
vironment, thus anticipating potentially dangerous situations
[24], [32], [33]. From an abstract point of view, these traffic
participants can be considered as a complex multi-agent
system. Indeed, the development of reliable solutions to
motion and behaviour prediction of road agents will enhance

the safety and capabilities of autonomous vehicles to adapt
human-like behaviour in real-world traffic conditions. The
authors in [152] review the tracking prediction and decision-
making. Predicting the behaviour of these agents is crucial
for AD systems [76], [153], mainly for risk assessment [24],
[29], and safe and comfortable motion planning [12], [132].
Motion prediction refers to estimating the future behaviour
of road agents given their current states and a model of
the environment in which they navigate. The problem of
predicting the future motions of road participants has been
addressed by various research works. An overview of motion
prediction can be found in [154]. A survey of early methods
of motion prediction of intelligent vehicles has been con-
ducted in [24]. Early methods of predicting the intention of
road participants are based on modelling the motion of the
agent. One way to predict the intention of a road participant
is to model its motion using kinematic and dynamic models.
The state evolution of these models allows us to know
the future state or the trajectory of the agent [155]. This
approach does not require information from the surrounding
environment. As a result, it fails at long-term predictions.
One limitation of common motion prediction approaches lies
in their inability to perform long-term predictions (model
simplicity and availability of measurements, context, etc).
This issue can be handled by using the data available from
HD maps, where lane information is available. Using HD
map allows to associate each actor with one or more lanes
as given by the geometric layer of the HD map. Then all
possible trajectories of an actor can be generated based on
the lane connectivity and the current state of the vehicle.
While this method, in contrary to previous works, is quite
good for long-term predictions, it nevertheless tends to make
predictions in common driving scenarios which are prone to
errors in the map and vehicle position. Moreover, it cannot
predict the strange behaviour of an actor. Methods in the
state-of-the-art of motion prediction using HD maps can be
classified into two main approaches as depicted in Table 2.
The first approach uses a raster of an HD map as an input of
the motion prediction architecture [147]. This raster is often
formed by projecting the geometric and semantic elements
of the map into a common plane, e.g. to be aligned with
other sensing modalities, e.g. images and point clouds from
sensors. Although this approach allows leveraging powerful
methods from CNNs, One limitation of this approach is the
difficulty to model certain spatio-tempral features, which
is essential for motion prediction. On the other hand, the
second approach allows to use directly map elements in their
vector formats which facilitates agent modelling and other
dynamic features in the map [148], [149], [156].

H. Third-Party Applications
HD maps can provide accurate and reliable ground truth data
that can be used as a reference for calibrating sensor outputs
[157]. For example, LiDAR can be calibrated and perfectly
aligned with an IMU using the highly-precise coordinates
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TABLE 2. Survey of recent work on motion prediction classified by the type of road representation from HD maps

Contribution Year Raster Vector Description of Map Representation

Jiang et. al. [135] 2016 - ✓ Estimation future vehicle states by fusing IMU, GPS and OpenStreetMap
Gao et. al. [136] 2020 - ✓ VectorNet: Map elements represented as sequence of vectors connected as GNN
Salzmann et. al. [137] 2020 ✓ - Trajectron++: Map elements and dynamic agents as directed graph fed into LSTM
Zhao et. al. [138] 2020 - ✓ TNT: Map elements encoded as sequence of polylines and connected as GNN
Gilles et. al. [139] 2022 - ✓ GOHOME: Map elements as a graph of lanelets (a sequence of centerline points)
Casas et. al. [140] 2018 ✓ - IntentNet: RGB color-coded rasterization of map geometry and semantics
Li et. al. [141] 2021 ✓ - Multi-PPTP: Composite rasterized map for both road elements and dynamic agents
Cui et. al. [142] 2019 ✓ - MultiModal: RGB colour-coded raster both map elements and surrounding agents
Hong et. al. [143] 2019 ✓ - Map geometric primitives rendered in top-down raster with unique RGB colours
Phan-Minh et. al. [144] 2020 ✓ - Rasterized image of road semantic and geometric elements with distinct colour
Liang et. al. [145] 2020 - ✓ LaneGCN: Map geometry is vectorized to form a lane graph as input to a GNN
Deo et. al. [146] 2021 - ✓ A directed graph encodes agent and map context as node in a lane-graph
Chai et. al. [147] 2019 ✓ - MultiPath: Rasterization of map features and dynamic agents in one image
Varadarajan et. al. [148] 2022 - ✓ Multipath++: Map elements are represented as parametric curves, e.g. Euler spiral
Nayakanti et. al. [149] 2022 - ✓ Wayformer: Map elements as a graph, each edge represented as annotated polyline
Luo et. al. [150] 2023 - ✓ JFP: Polyline graph, each created by Ramer-Douglas-Peucker algorithm
Gu et. al. [151] 2021 - ✓ DenseTNT: Map elements represented as sequence of vectors connected as GNN

FIGURE 6. Two examples of MMS: Trimble MX9, Leica Pegasus Two
Ultimate. Courtesy: Trimble and Leica-Geosystems websites

of geometric elements of an HD map. By comparing the
sensor measurements with the HD map data, any errors
or discrepancies can be identified and corrected, leading to
improved calibration of the sensors. Furthermore, HD maps
can be used for online (self) calibration. The availability of
an HD map, raw sensor data in real-time, and algorithms to
perform comparison makes it possible to compute the error
between sensor measurements and the ground truth. Thus it
allows for continuous correction of calibration errors of the
sensors in real-time. This enables the AD system to be more
robust and reliable to changing environmental conditions as
well as sensor performance variations. Online calibration
can result in more accurate and robust sensor calibration
compared to offline calibration methods. More recently, HD
maps can also be used to boost road annotations for creating
large datasets for traffic landmark detection [158].

V. BUILDING HD MAPS
A. Mobile Mapping Systems
Building HD maps is a sophisticated procedure in which
several steps are involved. The first step in the procedure of
building an HD map is to send specialized vehicles equipped
with a suite of high-precision and well-calibrated sensors to
survey and collect data about the environment. Data collec-
tion vehicles for mapping are likely to be equipped with
a highly-precise GNSS connected with or that implements
correction services such as RTK (Real-Time Kinematic)
positioning accuracy up to very few centimeters. GNSS
positioning measurement are often fused with the mea-
surements of high-performance IMU (Inertial Measurement
Unit) and wheel odometry. Several commercial products
exist that combine both GNSS and IMU in one unit as
an INS (Inertial Navigation System). Mapping vehicles are
also equipped with one or more high-resolution LiDAR and
cameras to collect raw 3D/2D data of the road environments.
There are two ways to set up a data collection vehicle for
mapping. The first is to buy the above mentioned sensors,
choose a suitable configuration and mount them on a ve-
hicle. Although this approach offers the flexibility to de-
fine sensor configuration beforehand; nevertheless calibrating
several and different sensors to the required precision for
mapping is not trivial and time-consuming, especially with
cameras [159]. Alternatively, several manufacturers provide
the whole suite of sensor in one package, referred to as
a mobile mapping system (MMS) [28], [37]. Examples
of commercially available MMS are shown in Figure 6.
More information about commercially available MMS, their
specifications and applications can be found in [160]. More
details about MMS as well as the technology, the sensor
used, their specifications, and applications can be found
in [28], [37], [161], [162]. Although MMSs are easy to
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install and calibrate, they do not provide more flexibility
to define the sensor configuration, e.g. where each sensor
is positioned and oriented with respect to the body of the
vehicle. MMS generates highly-detailed and precise geo-
referenced 3D point clouds that need to be stitched to create
a 3D representation of the environment.

VI. MAINTENANCE OF HD MAPS
Having an up-to-date HD map is crucial for the various
AD core components to function correctly. Errors in HD
maps could lead to severe damage due to inappropriate
decisions taken by the system. Erroneous decisions could be
avoided through frequent updates by the mapping vehicles.
The road environment is highly dynamic and likely undergo
frequent changes due to new infrastructure constructions,
road maintenance, and lane extensions. Mapping vehicles
must be able to detect changes in the environment and
send them to update the map. The map update procedure
involves complex processing steps, including handling data
from multiple sources and sensors at different scales, iden-
tifying the deviation between the stored map and the newly
collected data from the environment, and finally integrating
these deviations to update the different layers of the map.
Several methods and approaches have been developed in
the literature to capture HD map changes and update them
[163]. In the following, we review the different approaches
and methods to detect changes in HD maps and how this
information is applied to update the maps. The approach we
follow to review previous works to maintain HD maps is
based on analysing which layer is maintained by each state-
of-the-art method as summarized in Table 3.

A. Map Change Detection
Change detection in HD maps refers to the process of identi-
fying changes in the environment, such as new constructions,
road closures, etc. This is followed by updating the layers
of the map accordingly. HD maps undergo changes regularly
and having a map that can be trusted by autonomous vehicles
is crucial to guarantee navigation safety [18], [169]. Change
detection is typically achieved through the use of various
sensors, such as cameras, LiDAR, and radar, combined
with computer vision algorithms and machine learning tech-
niques. Change detection algorithms have found their way to
many applications, even before HD maps. Remote sensing is
one of the early applications of change detection and update
of maps [179]. It has also been applied successfully to urban
monitoring, forest changes, crisis monitoring, 3D geographic
information updating, construction progress monitoring, and
resource surveying [122]. At the most basic level of these
applications, the problem amounts to comparing raw sensor
data, mostly 3D point clouds [180], 2D images [181] or both
[182]. In 3D point clouds, change detection can be divided
into three main categories, namely point-based, object-based
and voxel-based change detections.

Although off-the-shelf methods from remote sensing still
could be adapted to change detection in HD maps, however,
their applicability is limited to detecting changes in the
base layer, which is typically represented as a point cloud
map. As an HD map is complex layered architecture with
geometric, semantic and topological information for which
change detection is challenging. In this context, there are
obviously two methodologies to update an HD map. The
first is to update the base map layer only and then use it
to regenerate the geometric, semantic and road connectivity
layers. The second is to directly detect changes and update
each layer individually, avoiding unnecessary computations
to regenerate the other layers in the map. In the following,
we briefly review the recent layer-specific change detection
works.

Regardless of the methodology used, previous works in
change detection could be categorized as either probabilistic,
geometric or deep learning approaches. Kim et. al. pro-
posed a probabilistic change detection algorithm based on
probability and evidence theories to update the base layer
from crowdsourced LiDAR data [79]. For change detection
in the geometric layer, Pannen et. al. [164] proposed a
method that uses the probability distribution of a particle
filter (PF) to define various metrics to quantify change
detection between detected lane markings and boundaries
with their counterparts in the map. These metrics are then
evaluated using weak and AdaBoost classifiers to quantify
geometric map changes through thresholding. Although the
approach in [164] has shown promising results to detect
changes in lane markings and road edges, one limitation of
this approach lies in the detection of minor changes in road
geometry, mainly due to sensor sparsity and noise. Another
probabilistic approach is the work of Welte et. al. [165]
in which a Kalman smoothing technique has been used to
detect positional errors in semantic features in HD maps.
The method has been applied to detect road signs inaccu-
rate positions. Alternative to Kalman or particle filter-based
techniques, Jo et. al. [172] have used Dempster–Shafer’s
theory of beliefs to infer the existence of map features.
Klejnowski et. al. [173] have used a similar approach for
change detection of traffic signs. While the vast majority
of change detection techniques in the literature have focused
on change detection of base, geometric, and semantic layers,
only few works detected changes in road connectivity. Yang
et. al. [171] have used fuzzy logic to match GPS traces
with the lane-level road network. Fuzzy membership degree
between GPS data and lane segments is used to quantify
matching and consequently change detection.

In a framework of HD map verification against certain
geometric errors, Pauls [168] et. al. proposed a geometric
approach to detect changes in road markings by grouping
road features via spatial-semantic clustering. Ordering these
groups and projecting them into 1D space yield a 1D signal
that quantifies changes in road markings. An improved
version has been presented by the authors in [169], where
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TABLE 3. Layer-based classification of change detection and update algorithms of HD maps

Contribution Year Base Geometric Connectivity Semantic Remarks

Kim et. al. [79] 2021 ✓ - - - Crowdsourced change detection and update of point cloud
Pannen et. al. [164] 2019 - ✓ - - Boosted PF for lane markings and road edges change detection
Welte et. al. [165] 2021 - - - ✓ Detecting position errors of traffic signs via Kalman smoothing
Zinoune et. al. [166] 2012 - ✓ - - Detecting presence of a roundabout using Bayesian classifier
Pannen et. al. [167] 2020 - ✓ ✓ - Gradient boosted tree regressor of feature change probability
Pauls et. al. [168] 2020 - ✓ - - Road markings change detection via projection to 1D signal
Pauls et. al. [169] 2021 - ✓ - - Road markings change detection via projection to 1D signal
Zhang et. al. [170] 2021 - ✓ - ✓ Matching of vectorized point cloud features against HD map
Yang et. al. [171] 2018 - ✓ ✓ - Fuzzy change detection by matching GPS traces vs lane geometry
Jo et. al. [172] 2018 - ✓ - ✓ Dempster–Shafer theory infers existence (change) of map feature
Klejnowski et. al. [173] 2017 - - - ✓ Dempster–Shafer crowdsourced change and update of traffic signs
Sun et. al. [174] 2022 - ✓ - - Crowdsourced change detection by monitoring leftmost lane width
Plachetka et. al. [175] 2023 - ✓ - ✓ Deep neural network based change detection from point clouds
Heo et. al. [176] 2020 - ✓ - ✓ Pixel-wise map change probability using deep learning
He et. al. [177] 2021 - - - ✓ Feature-based change detection using via object-detection
Bu et. al. [178] 2022 - - - ✓ Mask R-CNN, ResNet50, FPN for crosswalk change detection

boosted classification trees are used to ensure the consistency
of each feature group as a robust alternative to the maximum
margin classifier used in [168]. Both [168] and [169] have
been evaluated on the road evaluation dataset they have
presented in [18]. Another geometric framework for change
detection has been presented in [170]. The main idea in this
framework is to vectorize road features from a semantically
segmented point cloud via Euclidean clustering. Then, these
features are geometrically matched with their counterparts
in the HD map. Other works have focused on change
detection of very specific features, such as the width of the
leftmost lane [174]. While most of the discussed approaches
on geometric change detection of geometric features have
focused on road and lane markings, Zinoune et. al. [166]
develop an approach based on graphical pattern recognition
using a Bayesian classifier to detect missing roundabouts in
a map.

Recently there has been an interest to use deep learning
to detect changes in the different features of HD maps.
Plachetka et. al. [175] developed a deep neural network
(DNN)-based pipeline to detect deviations of certain geomet-
ric and semantic features in HD maps using LiDAR point
clouds. The main concept in their approach is to encode
both map elements and LiDAR point cloud into a common
feature map, both are then fed into a DNN architecture to
verify, falsify, or detect missing map elements. The proposed
approach has been successfully applied to detect changes in
traffic signs, traffic lights, and pole-like objects and vali-
dated on the 3DHD CityScenes dataset [183]. Alternative to
LiDAR point clouds, Heo et. al. [176] proposed an encoder-
decoder deep learning framework that takes as inputs both
RGB camera images in addition to an HD map raster
formed by projecting the map geometric elements on the
same image plane, i.e. using camera intrinsic and extrinsic
camera calibration parameters. The output of this framework

is pixel-wise change probability. The two modalities are then
fed into an adversarial learning block in order to reduce
the discrepancy between the two input modalities. This is
followed by a deep metric learning block to measure the
similarity between the output of the adversarial learning
block. The output of this framework is pixel-wise probability
of change. This framework has been successfully applied to
detect changes in lane geometry as well as lane markings.
However, the algorithm fails to recognize partially visible
objects. He et. al. [177] presented Diff-Net as a feature-based
change detection framework by leveraging deep learning
object-detection algorithms. The main idea in Diff-Net lies
in inferring map changes through parallel feature difference
calculation. Similar to [176], the change detection framework
in Diff-Net receives an RGB image as well as a rasterized
image formed by projecting HD map features on the same
image plane. The applicability of Diff-Net is however limited
to change detection in vertical semantic features, e.g. traffic
signs and lights. In contrast to the above image-based deep
learning method that detects changes in image plan, the
framework presented in [178] to detect changes in cross-
walks, Mask R-CNN for instance segmentation of crosswalks
and ResNet-50 combined with a Feature Pyramid Network
(FPN) has been used for feature extraction in Bird-Eye-View
(BEV). Most of these approaches are applied to very limited
and simplified use cases. Obviously, change detection in HD
maps is still in its infancy and universal change detectors for
HD maps are still missing.

B. Map Data Update
The second stage in the maintenance of an HD map is
to update the map elements based on the outcomes of
change detection. In simple terms, map update amounts to a
probabilistic data fusion problem. Continuously monitoring
changes in the ever-changing environment in near real-time
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and fusing different data modalities both in time and space,
and from different sources to update several layers is indeed
a challenging task. In their survey paper, Cadena et. al.
[184] identified that the distributed process of updating and
maintaining HD map created and used by large fleets of
autonomous vehicles is a cogent subject of future research.
Towards this direction, Kim et. al. [185], [186] proposed
a solution to keep new feature map layer [163] up to date
from crowdsourced point cloud data. This new feature map
forms a basis to build the different semantic and geometric
features of an HD map. Pannen et. al. [167], [187] proposed
a problem partitioning approach for the maintenance of HD
maps from crowdsourced data. However, the applicability
of this work is limited to the update of lane geometry, more
precisely to lane markings and road boundaries. In an attempt
to update the base map layer from real-time crowdsourced
point cloud data, Kim et. al. [79] developed and validated a
maintenance framework to update a point cloud map using
evidence theory [188] and a pose graph SLAM approach for
localization. Obviously, the results on change detection and
update of HD maps in real-time are very limited due to the
need for a reliable low-latency communication infrastructure
to handle this complex process.

VII. DATA AND COMMUNICATION INFRASTRUCTURE
FOR HD MAPS
Building and maintaining HD maps at scale is a matter
of data exchange between multiple stakeholders, e.g. gov-
ernment as the owner of the ITS roadside infrastructure,
map providers and vehicles, as depicted in Figure 7. Col-
lection, building, maintenance and distribution of map data
require a reliable communication and distributed computing
infrastructure [189]. This section discusses the data and
communication infrastructure needed to scale the creation,
maintenance and distribution of HD maps.

The first connected concepts have been proposed in 2012,
by introducing Local Dynamic Maps (LDM) defining four
layers, including static and dynamic information stored lo-
cally [190]. Onboard sensors, Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) data are used to collect dy-
namic information and make it available locally to the driver
and ADAS. Next, concepts that update the local map with
global information retrieved via the cellular network have
been proposed [47]. More specifically, techniques that take
into account the network coverage and performance are used
to come up with optimised schedules for data transmission
[191]. A first national deployment has been tested in Japan
in 2018 using the four-layer LDM principle [192]. More
recently, sophisticated centralized dynamic mapping systems
have been proposed and validated on a city-scale [193].
In the same vein, a cross-border system involving multiple
network operators has been proposed and experimentally
validated [194].

Crowed-sourcing approaches to share local perception
data that rely on different processing and uploading strate-

gies constitute the vast majority of studies that have been
published over the past couple of years [47], [194]–[199].
Some propose theoretical concepts [195] other validate their
approach through simulations [47], [197], [198] and experi-
ments [194], [196], [199]. The uploading strategies generally
focus on three abstraction layers: (1) local processing [190],
(2) uploading and processing on the network edge [197],
[198], [200], (3) uploading and processing in the cloud [191].
This abstraction allows to categorize the connected mapping
platforms into four categories: (1) centralized, i.e. cloud
systems, (2) decentralized, i.e. edge systems, (3) distributed
systems, i.e. self-organized local systems using direct com-
munications such as V2V, and (4) hybrid approaches [81],
[199], [201]. Furthermore, the dynamic nature of the data
needed for the different map layers impacts the choice of
communication technology used. For instance, the static lay-
ers that do not change frequently can rely on delay tolerant
and slow communication technologies, such as 2/3G cellular
networks. The more dynamic the data, the more reliable and
available the network needs to be. Transient dynamic data
such as weather and traffic conditions can tolerate seconds
or minutes of delay. However, highly dynamic data such
as the state of traffic signals or the presence of close by
vulnerable road users (VRU) like pedestrians or cyclists,
require a specialised network technology (e.g. C-V2X or
ITS-G5 [202]), and a dedicated offloading and processing
architecture, to meet requirements of safety applications
[201]. Standardisation efforts are ongoing to facilitate the
dissemination of highly dynamic data so that it can be used
as an input for the corresponding layers of the HD map [203].
However, the format and integration of this type of data
remain a challenge on their own and will be covered in more
detail in the next section.

VIII. CHALLENGES AND FUTURE PERSPECTIVES
Despite notable advancements in CCAM over the past
decade, achieving complete autonomy in vehicles is still
an unresolved challenge. For autonomous vehicles to be
deployed on a large scale, scalable solutions for HD maps are
essential. In this section, we shed light on the various chal-
lenges needed to be addressed to reach the full potential of
HD maps CCAM [25]. Undoubtedly, the availability of cost-
effective and flexible solutions for building, maintaining,
and distributing map data among stakeholders will greatly
enhance the scalability of CCAM in future generations of
smart cities. Further, we also discuss future perspectives and
applications of HD maps.

A. Challenges
1) Standardization and Data Representation
The concept of HD maps becomes widely accepted as a key
enabling technology for CCAM. Nevertheless, there is no
common agreement on how mapping data are represented,
how many layers are needed, what mapping data have to
be stored in each layer and in which data format. Defin-
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ing a common standard for HD maps is difficult due to
their complexity and large amount of data and information
they contain, making it challenging to create a standard
that is both comprehensive and easy to understand, store,
maintain, update and distribute effectively. Defining a com-
mon standard for mapping data will provide more data
compatibility and facilitate access to data while reducing
the costs of development and integration. Furthermore, this
will improve the quality, consistency, and privacy of data,
consequently improving the road safety of all participants
including automated vehicles. Recently, there have been few
initiatives to define a common standard. The NDS aims at
defining worldwide standards for HD map data in automotive
ecosystems [44], [57]. There are more than 44 members in
the NDS consortium, ranging from automotive constructors,
OEMs, and map solutions providers. Nevertheless, the NDS
standard is not yet adopted by most of the leading companies
that shape the AD industry today.

2) Scalability
Scalable HD map solutions are imperative to the mass
deployment of autonomous vehicles. Building a city, regional
and national-wide HD maps and keeping them updated
remains a big challenge, especially to deal with the different

standards, traffic rules and regulations used to represent
geometric road features as well as traffic signage. These
standards differ from one region to another. Mapping al-
gorithms have to be universal and be able to work in
different regions and countries. Mapping is supposed to be
a continuous process of data collection and processing, in
order to heal zones that have been changed. This process
becomes challenging in large geographical areas, where a
huge number of vehicles have to be part of the mapping
process. The mapping cost directly depends on how large the
zone to be mapped is and the number of vehicles needed to
serve it. Mapping vehicles are very expensive as discussed
early in this paper. Furthermore, using individual vehicles
equipped with consumer-grade sensors requires sophisticated
algorithms that are not yet mature. Additionally, the commu-
nication and the distributed computing infrastructure needed
to handle this use-case is the subject of ongoing research
and studies [195], [199], [204].

3) Networking and Computing Infrastructure
Handling and processing large amounts of data as in the
case of building and updating scalable HD maps requires a
reliable networking and computing infrastructure that shall
work in harmony and near real-time [194]. With the ad-
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vent of 5G/6G cellular communications, Internet of Things
(IoT) and edge computing architectures, many opportunities
for vehicular communications become available in general
[205], and solutions that handle building HD maps become a
commercially viable option [40]. These communication and
computing infrastructures are designed to handle such data-
hungry applications and meet their latency and bandwidth
requirements. Large-scale crowdsourced mapping with a
massive number of connected vehicles will be one of the
principal applications of these infrastructures [199].

4) Limitations of Mapping Algorithms
Despite the tremendous research and development efforts
expended for automating the process of building HD maps,
recent research outcomes in HD maps clearly reveal that
mapping algorithms used to extract HD map features and
build road and lane topology are still limited to simple
features [206]. Current state-of-the-art algorithms can detect
simple geometric features but fail to deal with high-curvature
features, e.g. roundabouts. Furthermore, most of these meth-
ods require several post-processing steps to get the feature in
a suitable vector format. Mapping semantic features is still
limited to very few and easily detectable traffic signs. Very
few recent works started to address building lane topology to
construct simplified road/lane connection networks. Devel-
oping a universal mapping pipeline makes it possible to build
a fully-featured HD map containing geometric, semantic and
topological information. Building such a pipeline remains a
challenge.

5) Map Data Ownership, Privacy, Integrity and Distribution
The future of building and maintaining HD maps will be
to automate and distribute the process in which millions of
individual vehicles are involved. Collecting, processing and
storing large amounts of distributed data from the environ-
ment raise several concerns about data ownership, privacy,
integrity and distribution. Raw mapping data are generated
in vehicles aggregated with other sources of data from public
authorities, processed and distributed by map providers. Map
data ownership from collection to distribution potentially
needs to be addressed in large-scale HD mapping. Further-
more, preserving the privacy of individuals and vehicles is
crucial and must be considered in the mapping process.
Mapping data may include sensitive user information such as
precise locations of vehicles as well as a precise description
of their environment. The integrity of HD map data must be
ensured in order to avoid incorrect and fatal decisions, espe-
cially if used by autonomous vehicles. Building accurate and
trustworthy HD maps still is an ongoing research question.
Commercially available HD maps often undergo manual
checks and verification by humans. Generating accurate and
reliable HD map data from multiple sources of data, e.g.
via crowdsourcing poses several technical issues, yet to be

solved. The ownership, privacy and integrity of scalable
HD maps have started recently to attract the attention of
researchers. On the other hand, blockchains have proven
themselves as a promising solution ensuring data integrity
due to their distributed and secure nature [207], [208]. The
use case of building and updating scalable HD maps while
keeping the traceability of data, their privacy and integrity
is a perfect application of blockchains. This technology is
expected to play a central role in building and distributing
the next generation of HD maps.

B. Future Perspectives
1) Photorealism
Precise localization has been one of the key motivations to
introduce HD maps to autonomous vehicles. The existence
of dense, and at the same time compact representations of the
road environment is fundamental for HD maps; especially for
localization. There has always been a compromise between
the density of information included in an HD map and
the computational effort needed to process them. Recent
progress in neural 3D scene representations makes it possible
to reconstruct photorealistic 3D scenes in a very compact
representation [209]–[214]. Representing the base map layer
using neural radiance fields (NeFR) allows benefiting from
both compact and photorealistic representation of this layer.
This technology will probably get maps for autonomous
vehicles to a new era.

2) Applications Beyond Autonomous Vehicles
HD maps are mainly developed to help autonomous vehicles
to understand and safely navigate in the environment. Thanks
to the detailed and precise representation of the environment
they provide, HD maps can also be used to improve the
quality of various services offered by classical digital maps.
Furthermore, HD maps can play an important role in digital
assistive technologies for people with disabilities. Mobility
and safety of visually impaired persons could be significantly
improved if they are equipped with suitable sensors and
have access to a highly precise, detailed and semantically
rich representation of the environment. If precisely local-
ized, a digital assistive device will be able to interpret
and understand the environment, therefore generating vocal
navigation messages for safe navigation. The real-time status
of traffic lights and other traffic information in HD maps for
pedestrians are relevant to enhance the functionality of these
devices. Presently, most HD map providers only offer maps
representing the vehicle environment. Mapping routes of
participants other than vehicles, e.g. sidewalks of pedestrians
and cycling tracks are still missing in HD maps of today.
Building and updating HD maps for all participants will
pave the road towards a broad range of autonomous and
non-autonomous navigation as well as several useful digital
services.
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3) Towards Digital Twins
The environmental digital twin is a holistic digital represen-
tation of the environment including all of its physical and
functional characteristics [215], [216]. A city-scale digital
twin is an emerging concept in CCAM that aims at building
a data-driven model that combines data from various sources
of IoT sensors, connected vehicles, buildings, intelligent
infrastructure and transportation networks and all other data
sources to help create a comprehensive, real-time model
of the city [217], and thus improves road services [218].
This concept generalises HD maps as a digital model for
connected and autonomous vehicles to a holistic digital
model that helps all entities in a society. Digital twins can
even be used to model the behaviour of the different entities
in the environment even at micro-scale of details [219]. An
HD map will be a single module of a digital twin [220]
that supports different functions and services for connected
and autonomous vehicles in our smart cities [221]–[224]. As
HD maps can be used to simulate complex driving scenarios,
digital twins will be used to simulate and analyze complex
city-scale scenarios for these vehicles [225]. Digital twins
will allow studying, analysing and simulating the impact
of new development projects or the effects of changes in
traffic patterns, and can help city planners and decision-
makers to analyze and optimize the performance of the city
by predicting future scenarios, and identify opportunities for
improvement. Building a city-scale digital twin is indeed a
big challenge that requires a large amount of data, and it can
be a complex and time-consuming process. Cross-validation,
integrity and trustworthiness of distributed large amounts
of data remain a challenge in creating digital twins [226],
[227]. Crowdsourced mapping of roads by vehicles will be
replaced by a unified process of simultaneous outdoor and
indoor mapping using large amount of data available from
heterogeneous connected sensors.

IX. CONCLUSION
HD maps continue to be a rapidly evolving aspect of real-
world CCAM applications, driving innovation and progress
within the field. Despite the existence of significant re-
search and development efforts on the applications of HD
maps in AD systems and the algorithms and infrastruc-
tures to build and maintain HD maps, there is very little
literature to summarize and provide a standing point on
these works. This paper extensively reviewed the previous
works on building and maintaining HD maps, including
cost-effective solutions as well as the communication and
mapping data requirements from generation to distribution.
Furthermore, the paper discussed the current challenges in
each of the above areas for building and maintaining HD
maps. More precisely, we provided a free-standing overview
of HD maps as a background for the broader community
of intelligent transportation systems. We also discussed and
analyzed the state-of-the-art of using HD maps for the
various core functions in AD systems. Furthermore, we

extensively discussed and reviewed the different approaches,
methods and algorithms to build the different layers of HD
maps and keep them up-to-date. Finally, we shed some light
on the prospective developments of HD maps for the next
generation of mobility applications.
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[28] I. Puente, H. González-Jorge, J. Martı́nez-Sánchez, and P. Arias, “Re-
view of mobile mapping and surveying technologies,” Measurement,
vol. 46, no. 7, pp. 2127–2145, 2013.

[29] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58443–58469, 2020.

[30] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, 2019.

[31] L.-H. Wen and K.-H. Jo, “Deep learning-based perception systems
for autonomous driving: A comprehensive survey,” Neurocomputing,
2022.

[32] F. Leon and M. Gavrilescu, “A review of tracking and trajectory
prediction methods for autonomous driving,” Mathematics, vol. 9,
no. 6, 2021.

[33] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A
survey on trajectory-prediction methods for autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–
674, 2022.

[34] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision
and Applications, vol. 9, no. 1, pp. 1–11, 2017.

[35] J. Cheng, L. Zhang, Q. Chen, X. Hu, and J. Cai, “A review of
visual slam methods for autonomous driving vehicles,” Engineering
Applications of Artificial Intelligence, vol. 114, p. 104992, 2022.

[36] J. Jeong, Y. Cho, and A. Kim, “Road-slam: Road marking based
slam with lane-level accuracy,” in 2017 IEEE Intelligent Vehicles
Symposium (IV), pp. 1736–1473, IEEE, 2017.

[37] M. Elhashash, H. Albanwan, and R. Qin, “A review of mobile
mapping systems: From sensors to applications,” Sensors, vol. 22,
no. 11, p. 4262, 2022.

[38] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, and M. A. Chapman, “Mobile
laser scanned point-clouds for road object detection and extraction:
A review,” Remote Sensing, vol. 10, no. 10, p. 1531, 2018.

[39] L. Zheng, B. Li, B. Yang, H. Song, and Z. Lu, “Lane-level road
network generation techniques for lane-level maps of autonomous
vehicles: A survey,” Sustainability, vol. 11, no. 16, p. 4511, 2019.

[40] R. Zhang and K. Cai, “The application of edge computing in
high-definition maps distribution,” Proceedings of the 2nd World
Symposium on Software Engineering, 2020.

[41] A. Boubakri, S. M. Gammar, M. B. Brahim, and F. Filali, “High
definition map update for autonomous and connected vehicles: A
survey,” in 2022 International Wireless Communications and Mobile
Computing (IWCMC), pp. 1148–1153, 2022.

[42] J. M. GITLIN, “The most detailed maps of the world will be for
cars, not humans,” 2017.

[43] M. M. Waldrop et al., “No drivers required,” Nature, vol. 518,
no. 7537, p. 20, 2015.

[44] P. Hubertus, M. Schleicher, F. Klebert, G. Horn, and M. Junker, “The
benefits of a common map data standard for autonomous driving:
Navigation data standard,” tech. rep., 2019.

[45] “Geodata report - analysis and recommendations for self-driving
vehicle testing,” technical report, 2020.

[46] B. Ebrahimi Soorchaei, M. Razzaghpour, R. Valiente, A. Raftari,
and Y. P. Fallah, “High-definition map representation techniques for
automated vehicles,” Electronics, vol. 11, no. 20, p. 3374, 2022.

[47] M. Garcı́a, I. Urbieta, M. Nieto, J. González de Mendibil, and
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[87] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intel-
ligent Vehicles Symposium (IV), pp. 449–454, IEEE, 2013.

[88] A. Ranganathan, D. Ilstrup, and T. Wu, “Light-weight localization
for vehicles using road markings,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 921–927, IEEE,
2013.

[89] Z. Tao, P. Bonnifait, V. Fremont, and J. Ibanez-Guzman, “Lane
marking aided vehicle localization,” in 16th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC 2013), pp. 1509–
1515, IEEE, 2013.

[90] Z. Tao and P. Bonnifait, “Tightly coupling gps with lane markings
for autonomous vehicle navigation,” in 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pp. 439–
444, IEEE, 2014.

[91] K. Yoneda, C. Yang, S. Mita, T. Okuya, and K. Muto, “Urban
road localization by using multiple layer map matching and line
segment matching,” in 2015 IEEE Intelligent Vehicles Symposium
(IV), pp. 525–530, 2015.

[92] X. Qu, B. Soheilian, and N. Paparoditis, “Vehicle localization using
mono-camera and geo-referenced traffic signs,” in 2015 IEEE Intel-
ligent Vehicles Symposium (IV), pp. 605–610, IEEE, 2015.

[93] Z. Tao and P. Bonnifait, “Road invariant extended kalman filter
for an enhanced estimation of gps errors using lane markings,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3119–3124, IEEE, 2015.

[94] S. Bauer, Y. Alkhorshid, and G. Wanielik, “Using high-definition
maps for precise urban vehicle localization,” 2016 IEEE 19th Inter-
national Conference on Intelligent Transportation Systems (ITSC),
pp. 492–497, 2016.

[95] Z. Tao, P. Bonnifait, V. Frémont, J. Ibanez-Guzman, and S. Bon-
net, “Road-centered map-aided localization for driverless cars using
single-frequency gnss receivers,” Journal of Field Robotics, vol. 34,
no. 5, pp. 1010–1033, 2017.

[96] S. Zheng and J. Wang, “High definition map-based vehicle local-
ization for highly automated driving: Geometric analysis,” in 2017
International Conference on Localization and GNSS (ICL-GNSS),
pp. 1–8, IEEE, 2017.

[97] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise localization
in high-definition road maps for urban regions,” in 2018 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
pp. 2167–2174, IEEE, 2018.

[98] S.-J. Han, J. Kang, Y. Jo, D. Lee, and J. Choi, “Robust ego-motion
estimation and map matching technique for autonomous vehicle
localization with high definition digital map,” in 2018 International
Conference on Information and Communication Technology Conver-
gence (ICTC), pp. 630–635, IEEE, 2018.

[99] H. Cai, Z. Hu, G. Huang, D. Zhu, and X. Su, “Integration of gps,
monocular vision, and high definition (hd) map for accurate vehicle
localization,” Sensors, vol. 18, no. 10, p. 3270, 2018.

[100] W.-C. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus,
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