Article (Périodiques scientifiques)
Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions
GARCIA SANTA CRUZ, Beatriz; HUSCH, Andreas; HERTEL, Frank
2023In Frontiers in Aging Neuroscience, 15
Peer reviewed
 

Documents


Texte intégral
fnagi-15-1216163.pdf
Postprint Éditeur (1.39 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Parkinson's disease,neurodegeneration,Neuroimaging,machine learning,deep learning,computer-aided-diagnosis,Digital Health
Résumé :
[en] Parkinson’s disease (PD) is a progressive and complex neurodegenerative disorder associated with age that affects motor and cognitive functions. As there is currently no cure, early diagnosis and accurate prognosis are essential to increase the effectiveness of treatment and control its symptoms. Medical imaging, specifically magnetic resonance imaging (MRI), has emerged as a valuable tool for developing support systems to assist in diagnosis and prognosis. The current literature aims to improve understanding of the disease’s structural and functional manifestations in the brain. By applying artificial intelligence to neuroimaging, such as deep learning (DL) and other machine learning (ML) techniques, previously unknown relationships and patterns can be revealed in this high-dimensional data. However, several issues must be addressed before these solutions can be safely integrated into clinical practice. This review provides a comprehensive overview of recent ML techniques analyzed for the automatic diagnosis and prognosis of PD in brain MRI. The main challenges in applying ML to medical diagnosis and its implications for PD are also addressed, including current limitations for safe translation into hospitals. These challenges are analyzed at three levels: disease-specific, task- specific, and technology-specific. Finally, potential future directions for each challenge and future perspectives are discussed
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GARCIA SANTA CRUZ, Beatriz ;  Centre Hospitalier de Luxembourg > Service National du Neurochirurgie
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
HERTEL, Frank ;  Centre Hospitalier de Luxembourg > Service National du Neurochirurgie
Co-auteurs externes :
no
Titre :
Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions
Date de publication/diffusion :
2023
Titre du périodique :
Frontiers in Aging Neuroscience
Volume/Tome :
15
Peer reviewed :
Peer reviewed
Projet FnR :
FNR12244779 - Molecular, Organellar And Cellular Quality Control In Parkinson'S Disease And Other Neurodegenerative Diseases, 2017 (01/05/2018-31/10/2024) - Jens Schwamborn
Disponible sur ORBilu :
depuis le 21 juillet 2023

Statistiques


Nombre de vues
263 (dont 6 Unilu)
Nombre de téléchargements
167 (dont 11 Unilu)

citations Scopus®
 
44
citations Scopus®
sans auto-citations
44
citations OpenAlex
 
48

Bibliographie


Publications similaires



Contacter ORBilu