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Machine learning models for
diagnosis and prognosis of
Parkinson’s disease using brain
imaging: general overview, main
challenges, and future directions
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2Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg,
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Parkinson’s disease (PD) is a progressive and complex neurodegenerative disorder

associatedwith age that a�ectsmotor and cognitive functions. As there is currently

no cure, early diagnosis and accurate prognosis are essential to increase the

e�ectiveness of treatment and control its symptoms. Medical imaging, specifically

magnetic resonance imaging (MRI), has emerged as a valuable tool for developing

support systems to assist in diagnosis and prognosis. The current literature aims

to improve understanding of the disease’s structural and functional manifestations

in the brain. By applying artificial intelligence to neuroimaging, such as deep

learning (DL) and other machine learning (ML) techniques, previously unknown

relationships and patterns can be revealed in this high-dimensional data. However,

several issues must be addressed before these solutions can be safely integrated

into clinical practice. This review provides a comprehensive overview of recent

ML techniques analyzed for the automatic diagnosis and prognosis of PD in brain

MRI. The main challenges in applying ML to medical diagnosis and its implications

for PD are also addressed, including current limitations for safe translation into

hospitals. These challenges are analyzed at three levels: disease-specific, task-

specific, and technology-specific. Finally, potential future directions for each

challenge and future perspectives are discussed.

KEYWORDS
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Introduction

Computer-aided diagnosis (CAD) systems based onmedical imaging has the potential to
assist clinical practice in the diagnosis of Parkinson’s disease (PD). However, the suitability
of CAD systems for this application is still being evaluated, and several key aspects must be
taken into consideration.

The primary objective of CAD systems is not to replace radiologists and clinicians, but to
support them in improving the quality and efficiency of their diagnoses (Chen et al., 2013).
Although CAD systems have been in use for several decades, with successful applications in
detecting pulmonary nodules (Xu et al., 1997) and breast cancer (Mangasarian et al., 1995),
they were previously reliant on manual feature extraction based on domain knowledge.
However, with the recent emergence of Machine Learning (ML) techniques, such as Deep
Learning (DL), the automatic extraction of features from imaging data has become possible
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(Doi, 2007). Furthermore, the availability of large datasets and
more powerful computational infrastructure has facilitated the
development of advanced ML algorithms, which have the potential
to significantly improve the accuracy of CAD systems (Neri et al.,
2019).

Although CAD systems based on Artificial Intelligence (AI)
have the potential to greatly enhance the effectiveness of clinical
diagnosis and prognosis workflows, it is essential to carefully
consider several key factors to ensure their safe and effective
implementation in clinical practice. In fact, there is often a gap
between the research literature on ML models and their final
deployment in clinical applications. Closing this gap requires
careful consideration and addressing several crucial aspects such
as model robustness, data quality and bias, regulatory compliance,
integration with existing clinical workflows, and ongoing validation
in real-world settings.

A good example of a clinical deployment of an AI system that
exemplified this gap is the AI-based tool by Google, Automated
Retinal Disease Assessment (ARDA) system. Although this DL
system was successfully developed and internally validated at the
research level in 2016 (Gulshan et al., 2016), it faced several
challenges in transitioning from the theoretical expectations to the
reality of deploying the AI model tool in India and Thailand, as
discussed in a recent paper highlighting the necessity of considering
this gap (Widner et al., 2023).

While previous review papers have thoroughly covered the
topic of using ML as a proof-of-concept for CAD systems
(Sakai and Yamada, 2019; Mei et al., 2021), there has not been
a previous review that specifically addresses the changes and
potential solutions associated with the translation of these models
into clinical practice for PD imaging using ML.

This review is organized as follows: first, a comprehensive
background on PD, including related conditions and proposed
clinical subtypes is presented. Second, the diagnosis and prognosis
of PD is introduced, with a specific focus on the employment
of magnetic resonance imaging (MRI). Lastly, a comprehensive
analysis of the present status of computer-aided diagnosis, will be
discussed, emphasizing the main limitations and future directions
at three different levels. These considerations will take into account
the unique features of PD, as well as the limitations of clinical
brain imaging datasets, and the challenges associated with ML
and DL approaches. By considering these factors, this review
aims to provide insights into the potential of CAD in assisting
clinical practice in the diagnosis of PD, while also highlighting the
challenges that need to be addressed to ensure its safe and effective
translation into clinical practice.

Parkinson’s disease and related
disorders

It has been more than 200 years since the first description
of the symptoms of PD by James Parkinson in his essay “The
Shaking Palsy” (Parkinson, 2002). This first description refers to
some of the most prominent physical landmarks of the disease,
such as tremors and flexed posture. Nowadays, we have a more
holistic understanding of this complex neurodegenerative disease,

but currently, there is no cure, and no established biomarker for
differential diagnosis of the disease (Tolosa et al., 2021).

PD is the second most common neurodegenerative disorder
after Alzheimer’s disease (AD), with more than 10 million people
affected worldwide (Marras et al., 2018). One of the main risk
factor associated with PD is advanced age. Considering that the
elderly population is expected to double by 2050, the number of
PD patients is expected to increase accordingly (Nerius et al., 2017).
It is characterized by visible motor symptoms such as slowness of
movement, muscle rigidity, and tremors at rest (Sveinbjornsdottir,
2016). However, non-motor symptoms such as depression, anxiety,
cognitive deficits, sleep disturbance, hyposmia, cardiovascular
problems, and bladder dysfunction can also be debilitating and
may present before the motor problems (Chaudhuri et al., 2006).
Notably, there is growing evidence that PD is associated with
gastrointestinal dysfunction and changes to the microbiome, which
may have potential as a biomarker (Elfil et al., 2020). By the time
the main physical symptoms of PD appear and the patient receives
a diagnosis, 30%–50% of the dopamine neurons vulnerable to
PD are already lost. Hence, a key goal is to detect and quantify
PD biology before their symptoms appear, during the prodromal
phase (Pellicano et al., 2007). Clinical markers of this phase are
non-motor and motor symptoms. Non-motor symptoms include
hyposmia, constipation, REM sleep behavior disorder (RBD),
excessive daytime somnolence, depression and/or anxiety, global
cognitive deficit, and orthostatic hypotension. Motor symptoms
include voice and face akinesia (Hustad and Aasly, 2020).

PD affects various regions of the nervous system and different
types of neurons. However, much attention has been given
to neurons in brain regions associated with motor symptoms,
particularly the substantia nigra pars compacta in the midbrain.
This region is involved in a critical brain pathway that facilitates
movements, known as the nigrostriatal pathway (Eriksen et al.,
2009). One of the most widely accepted frameworks to describe the
spread of sporadic PD is Braak’s hypothesis, which suggests that PD
progresses through six different stages, gradually evolving from the
lower brain stem to the neocortex (Rietdijk et al., 2017). The gradual
degeneration of dopaminergic neurons in the substantia nigra leads
to the malfunction of this pathway and the characteristic motor
problems. It has been proposed that not all patients follow this
progression, and two subtypes have been suggested for the disease
evolution: peripheral nervous system first (PNS-first) and central
nervous system first (CNS-first) (Borghammer and Van Den Berge,
2019). The existence of these subtypes is supported by in vivo

imaging studies of RBD-positive and RBD-negative patient groups
(Borghammer and Van Den Berge, 2019), as well as for genetic
makers (Blauwendraat et al., 2020).

Current treatments for deficits in dopamine often involve
the use of drugs that either replace or mimic dopamine in
the brain (Cools, 2006). However, over time, the effectiveness
of these drugs tends to diminish. In addition to medication,
physical therapy can be employed as a complementary approach to
enhance cognitive function in individuals with dopamine deficits
(da Silva et al., 2018). Physical therapy focuses on improving
mobility, balance, and coordination, which can positively impact
cognitive abilities. Furthermore, alternative therapeutic avenues
are being explored. Probiotics have shown potential in reducing
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constipation associated with Parkinson’s disease (Tan et al.,
2021). Additionally, anaerobic exercise has been investigated as a
current approach for managing dopamine deficits (Schootemeijer
et al., 2020). Moreover, emerging treatment options include drug
repurposing, regenerative therapies, gene therapies, and cell-
based treatments (Stoker and Barker, 2020). These innovative
approaches offer promising prospects in the management of
dopamine-related deficits.

Deep brain stimulation (DBS) is an effective treatment option
for PD by targeting the subthalamic nucleus, globus pallidus (Lee
et al., 2019), ventral intermedius nucleus (Fasano et al., 2012),
and pedunculopontine nucleus (Thevathasan et al., 2018). Next-
generation noninvasive DBS technologies, such as noninvasive
or minimally invasive DBS (Lozano, 2017), transcranial direct
current stimulation (tDCS) (Broeder et al., 2015), and transcranial
magnetic stimulation (TMS) (Cantello et al., 2002), have also shown
positive effects in reducing non-motor symptoms of PD when
appropriate controls for side effects are in place. However, there is
currently no cure for neurodegeneration, and current efforts focus
on reducing symptoms to improve the quality of life.

Related conditions

Several neurological movement disorders are closely associated
with PD, and differentiating it from other diseases can be
challenging, especially during the initial stages of the disease
(Poewe and Wenning, 2002). Related disorders that share
similar clinical features with PD can be classified into two
broad categories: degenerative disorders and non-degenerative
disorders (Politis, 2014). Degenerative disorders, such as Multiple
System Atrophy (MSA), Progressive Supranuclear Palsy (PSP),
Corticobasal Degeneration (CBD), Dementia with Lewy Bodies
(DLB), and AD, can present with clinical features that overlap
with PD. On the other hand, non-degenerative disorders such as
Essential Tremor (ET), dystonic tremor, exaggerated physiological
tremor, tremor related to hyperthyroidism, vascular parkinsonism,
normal pressure hydrocephalus (NPH) (Stolze et al., 2001) and
drug-induced parkinsonism can also mimic some of the clinical
features of PD.

Parkinson’s disease clinical subtypes

The clinical and neuropathological heterogeneity of PD
patients is well known, and consequently there have been many
attempts to identify different subtypes. Initial approaches consisted
of empirical classifications using a priori hypotheses (Zetusky
et al., 1985; Jankovic et al., 1990). In recent years, research
works have progressively employed data-driven cluster analysis
that includes longitudinal assessment of motor and non-motor
symptoms (De Pablo-Fernández et al., 2019; Zhang et al., 2019;
Dadu et al., 2022). This classification method looks promising
for informing patients about the future progression of the disease
and for personalizing treatment. However, these criteria are not
yet applied in clinics since more research is needed to unify

and validate the criteria using well-curated longitudinal cohorts.
Among the multiple attempts to separate the disease, several
criteria have been applied, including early-onset vs. late-onset
(Riboldi et al., 2022) slow vs. fast progression, with or without
dementia or tremor-dominant vs. gait-dominant (Dadu et al.,
2022).

Machine learning, deep learning and
computer vision

In recent years, ML and DL have gained significant attention
in healthcare and medical research. These computational tools
enable the analysis of large and complex datasets to learn patterns
and relationships, with DL algorithms utilizing multiple layers of
artificial neural networks to extract abstract data representations
such as images. Furthermore, Computer Vision (CV) seeks to
enable computers to interpret and understand visual information
from the surrounding environment. Supervised learning is a
common type of ML employed in PD research, where labeled
datasets are used to train the algorithm to make predictions on
unseen data. Convolutional neural networks (CNNs) are the most
frequently used type of neural network for image recognition to
conduct tasks such as classification in medical imaging. In Figure 1,
a graphical representation of the training and development of a
ml-based system for clinical use is depicted.

The quality of data and labels are crucial factors that can
significantly impact the performance of ML models. In current
ML models, data is the most important component as the models
learn from the data presented to them. Therefore, the quality
of the data used in the training process is crucial. Other factors
that can influence the quality of models include the choice of
ML algorithms, feature engineering, hyperparameter tuning, and
model selection. In addition to data quality, the quality of labels
is also critical. Poor quality labels can result in biased models,
incorrect predictions, and suboptimal performance.Moreover, data
representation is equally important for a good model performance.
A training set should be a representation of the event that we want
to model, and a good validation strategy is essential for assessing
the generability of the model.

Parkinson’s disease diagnosis and
prognosis

Accurate diagnosis of PD is essential, and achieving enough
specificity to distinguish between similar conditions during the
clinical phase is crucial. Developing monitoring tools to track
disease progression and evaluate individual patient response,
including the presence and magnitude of treatment side effects,
is also necessary. Furthermore, quantifying the different systems,
such as motor, memory, and limbic system, could help stratify
patients. In terms of prognosis, ongoing efforts are focused on
establishing clear criteria for patient stratification into different
subtypes, which would aid in the development of targeted
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FIGURE 1

Training and using an ML model in the clinic involves two main phases. In the blue phase, the model is trained and validated using data from the same

hospital. This ensures it learns from the hospital’s specific context and performs well within that setting. After this, the model undergoes clinical

validation to ensure its reliability and safety before deployment. In the green phase, the model can be used in new hospitals, but caution is needed to

address potential generalization issues. Variations in healthcare systems and patient populations may a�ect its performance. Thorough testing and

evaluation are necessary to ensure accurate and safe application in di�erent healthcare settings.

FIGURE 2

Proposed biomarkers for PD using MRI: (A) Prodromal biomarker: identifying brain changes during the prodromal phase. (B) Di�erential diagnosis

biomarker: assisting in distinguishing PD from related diseases. For instance, ET or MSA. (C) Subtype biomarker: classifying PD patients into their

corresponding subtypes. (D) Progression biomarker: aiding in predicting the progression of the disease and treatment response with disease

monitoring. (E) Therapy response biomarker: facilitating personalized medicine by finding the best drug, dietary protocols, physical or cognitive

therapies, and predicting the potential response to other therapies such as DBS and non-invasive DBS.

treatment approaches. Figure 2 proposes five different biomarkers
that are relevant in the context of PD.

The current diagnostic criteria for PD is biased on a
comprehensive evaluation of a patient’s clinical presentation and
medical history. Given the lack of a definitive diagnostic test for PD,
clinicians rely on a variety of subjective and objective measures to

make an accurate diagnosis. Clinical evaluation, involving detailed
inquiry into the patient’s symptoms, medical history, and family
history, represents a fundamental component of the diagnostic
process. Alongside this, a thorough physical examination aimed
at assessing motor function, including muscle strength, reflexes,
and coordination, as well as cognitive function and mood, is also
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typically conducted. To support a clinical diagnosis, objective tests
may be employed. Imaging modalities such as MRI or computed
tomography (CT) scans are typically employed to rule out other
conditions that may present similarly to PD. Furthermore, nuclear
imaging techniques such as Single Photon Emission Computed
Tomography (SPECT) and Positron Emission Tomography (PET)
can serve to buttress the diagnosis of PD.

Nowadays, there is a significant effort to find biomarkers for
PD. In the preclinical phase, it highlights biomedical markers, such
as those that measure the activity of mitochondria dysfunction
and oxidative stress (He et al., 2018). Others focus on measuring
abnormal protein aggregation and accumulation, such as alpha-
synuclein (Foulds et al., 2011) or tau protein (Constantinescu and
Mondello, 2013). Some try to measure established clinical features
such as olfactory dysfunction, RBD, or constipation. During the
prodromal phase, genetic biomarkers have been explored, such
as mutations in Parkin (Pickrell and Youle, 2015), Leucine-rich
repeat kinase 2 (LRRK2) (Tolosa et al., 2020), or Alpha-synuclein
(SNCA) (Mata et al., 2010). Finally, neuroimaging techniques are
also promising.

In the context of brain imaging, a biomarker is an objective
characteristic derived from an in vivo image that measures a
normal biological process, pathological process, or response to a
therapeutic intervention (Mohammadi, 2013). It must fulfill the
following criteria: be quantitative, repeatable, reproducible, precise,
reliable, sensitive, and specific, and be measured on a ratio or
interval scale (Smith et al., 2003).

Medical imaging in Parkinson’s disease

The main advantage of brain imaging is that it allows for the
visualization of the functional and structural brain changes that
result from underlying pathophysiological abnormalities (Saeed
et al., 2017). There are several imaging techniques that can be used
to aid in the diagnosis and prognosis of PD.

On the one hand, there is a set of non-invasive techniques for
investigating PD, such as structural magnetic resonance imaging

(MRI) with T1, T2, and susceptibility-weighted sequences, which
allow for volumetric and voxel-based morphometric analyses,
as well as MRI-derived visual signatures (Saeed et al., 2017;
Chougar et al., 2021). For instance, Schwarz et al. (2014) proposed
that the appearance of the dorsolateral substantia nigra as a
“swallow tail” shape on high-resolution, iron-sensitive, MRI at
3T, where healthy nigrosome-1 appears as a characteristic feature
that could be employed as a marker of degeneration in that area.
Further, a promising structural MRI sequence for PD diagnosis
is neuromelanin-sensitive MRI (NM MRI), which can detect
neuromelanin, a pigment synthesized by the substantia nigra
dopamine neurons that is lost when neurons die in PD patients.
NM’s avid binding of iron enables its detection via magnetic
resonance imaging (Sulzer et al., 2018). The use of NM MRI
to define regions of interest (ROIs) in the substantia nigra pars
compacta (SNpc) has shown promising results compared to using
T2*-weighted contrasts. This approach has yielded consistent
results, and studies have found that the mean R2* in the SNpc, as
defined by neuromelanin-sensitiveMRI, was significantly increased
in PD patients (Langley et al., 2019).

Diffusion tensor MRI (DT-MRI) is another technique used
to study the structural connectivity of the brain in PD. DT-MRI
investigates the integrity of white matter tracts connecting different
brain regions, and studies have shown that it can detect changes in
white matter connectivity in PD patients. Specifically, Yoshikawa
et al. (2004) demonstrated that DT-MRI can detect the loss of
fractional anisotropy (FA) in the nigrostriatal projection, indicating
that more than half of the dopaminergic neurons in this projection
may be lost before the onset of PD.

Furthermore, functional magnetic resonance imaging (fMRI)
can detect changes in blood flow in response to neural activity,
which enables researchers to study brain function. In PD, fMRI
has been used to investigate changes in brain activity related to
both motor and non-motor symptoms. For instance, Tahmasian
et al. (2015) employed resting-state (rs-fMRI) to assess the effect of
dopamine replacement therapies, such as levodopa and dopamine
agonists, on PD patients. Additionally, researchers have used
fMRI techniques to investigate the effect of DBS therapy in the
modulation of specific brain regions. An example of this is a
study by Boutet et al. (2021), in which fMRI brain response
patterns were used to predict the optimal parameters for DBS by
identifying patterns associated with clinically effective stimulation
that preferentially engages the motor circuit.

Additionally, Transcranial sonography (TCS) is an
ultrasound-based neuroimaging technique that utilizes low
frequency sound waves to generate images of the brain. In the
context of PD diagnosis, TCS has been employed to investigate
the structure and function of the SN, among other brain regions.
Mahlknecht et al. (2013) demonstrated that TCS exhibits favorable
diagnostic accuracy in detecting PD subjects based on the presence
of hyperechogenicity in the SN Furthermore, TCS has been
investigated as a potential tool to establish disease progression
biomarkers that could provide real-time feedback on the rate of
dopaminergic neuronal death in animal models (Zhang et al.,
2020).

On the other hand, invasive molecular imaging techniques
such as PET and SPECT can detect reduced density of
dopaminergic nerve terminals in the basal ganglia. PET is an
in vivo functional neuroimaging technique that utilizes a variety
of radionuclides to assess the integrity of the dopaminergic
system, cerebral metabolism, pathological protein accumulation,
and inflammation in the brain (Saeed et al., 2017). Radiotracers,
such as 18F-dopa (Morrish et al., 1996) and 11C-raclopride
(Politis et al., 2008), can image the integrity of presynaptic
and postsynaptic nigrostriatal and hypothalamus projections,
respectively. Using SPECT, dopamine transporter SPECT (DAT
SPECT) imaging is an objective tool for assessing dopaminergic
function of presynaptic terminals, differentiating parkinsonian
disorders related to striatal dopaminergic deficiency from those not
related. DAT SPECT imaging can confirm or exclude a diagnosis
of dopamine-deficient parkinsonism and detect dopaminergic
dysfunction in presymptomatic subjects at risk for PD. Normal
DAT SPECT findings exclude presynaptic striatal dopaminergic
insufficiency, while abnormal findings indicate a variety of diseases
with this insufficiency as a common pathophysiological process
(Akdemir et al., 2021). For instance, DaT SPECT imaging with
(123I)ioflupane is a useful tool to distinguish between PD-tremor
and non-PD tremor, such as ET (Bajaj et al., 2013). Besides,
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other non-dopaminergic imaging techniques such as glucose
metabolism and PDE10A expression have been proposed to study
PD (Pagano et al., 2016). Additionally, extrastriatal 123I-FP-CIT
SPECT impairment has been proposed to detect early cases of PD
(Nicastro et al., 2020).

While imaging techniques are currently used for research
purposes and can assist in challenging cases, they are not commonly
used for diagnosing PD. However, it is worth noting that most
PD diagnoses do not involve imaging. In the future, brain imaging
could be integrated into the diagnostic process as advancements in
techniques likeML andCVhold promise for improving the analysis
of imaging data. These developments may enable more accurate
and reliable diagnostic applications of imaging in PD.

Computer-aided diagnosis using brain
imaging: main limitations and future
directions

The main limitations of CAD systems in the context of PD
can be grouped into three categories. The first set of limitations
represented in Figure 3 pertains to the particularities of PD, its
diagnosis, and prognosis. The second set of limitations is associated
with the characteristics of datasets consisting of brain imaging.
These limitations include factors such as the heterogeneity of the
imaging modalities used, variability in image acquisition protocols,
challenges in image preprocessing and feature extraction, and
issues related to sample size and data quality. The third set of
limitations is associated with the use of ML/DL-based algorithms
for CAD systems. These limitations include challenges such as
overfitting, lack of interpretability, bias and generalization issues,
and difficulties in integrating multiple data sources. A summary of
the main limitations can be found in Table 1, which will serve as a
reference point throughout the discussion of potential solutions to
address these limitations.

CAD systems have the potential to improve the accuracy and
efficiency of diagnosing various diseases. By analyzing medical
imaging data, genetic data, and clinical data, these systems can
identify patterns and biomarkers associated with the disease that
may be difficult to detect otherwise, which can accelerate the
diagnostic and treatment workflows in clinical pathways.Moreover,
CAD systems can be employed to evaluate disease progression,
measure therapeutic responses to drugs in clinical trials, and speed
up the development of new treatments.

Other benefits of CAD systems include the objectification of
diagnosis, as the current diagnosis relies on subjective evaluation of
motor and non-motor symptoms, making CAD systems promising
tools for the objective evaluation of symptoms. In the context of
MRI for PD, CAD systems can provide quantitative measures of
the changes associated with the disease at physical, functional,
and metabolic levels. Furthermore, the employment of CAD
systems could aid in the unification of clinical diagnosis criteria.
Additionally, CV solutions, including those that employ DL as
an optimisation technique, have been shown to excel at detecting
subtle changes and complex patterns in comparison with human
vision. Therefore, CAD systems have the potential to serve as a
valuable second or supporting opinion, as they do not experience

a reduction in productivity over time, as can happen with
human experts.

There are many research-level papers proposing proof-of-
concept approaches for CAD systems in PD, emphasizing the
importance of robust models. For instance, Castillo-Barnes et al.
(2018) utilized the PPMI dataset and proposed an Ensemble
Classification model to classify PD patients. Similarly, Augimeri
et al. (2016) demonstrated the potential of support vector
machines in combination with careful feature extraction to analyze
DaTSCAN scans for PD applications. In line with these studies,
Martínez-Murcia et al. (2014) also proposed a PD classification
method using DaTSCAN scans.

Similarly, machine learning (ML) has been employed to
distinguish between PD and related disorders. For instance,
Talai et al. (2021) propose a multimedia approach using T1-
weighted, T2-weighted, and diffusion tensor imaging (DTI) to
aid in the differential diagnosis of progressive supranuclear palsy
Richardson’s syndrome (PSP-RS). In the same vein, Martins
et al. (2021) reported on the use of PET uptake and MRI for
distinguishing Parkinsonian syndromes. Similarly, Castillo-Barnes
et al. (2020) conducted a study that employed SPECT scans from
the PPMI database and compared different ML methods.

More recently, CNN has been successfully proposed for the
classification of brain imaging in PD. For instance, Chakraborty
et al. (2020) proposed a classification using T1 weighted MRI scans
using CNNs. Similarly, Martinez-Murcia et al. (2019) demonstrated
the use of autoencoders to classify complex neurological diseases
such as Alzheimer’s. Finally, Shinde et al. (2019) also demonstrated
the potential of CNNs in the modality of neuromelanin-sensitive
MRI with great performance (Biondetti et al., 2020).

The mentioned research-level papers and alike ones, provide
a valuable insights into the potential of CAD systems for PD.
However, it is crucial to acknowledge that these studies primarily
focus on demonstrating the effectiveness of specific methodologies
or models in isolated aspects of PD diagnosis or classification.
While their findings are promising and essential to the progress in
the area, they represent only a fraction of what is required for the
development of comprehensive and practical clinical systems.

To build end-to-end clinically useful CAD systems for PD,
various aspects need to be considered beyond the individual proof-
of-concept models. These aspects may include data acquisition
and quality assurance, integration with existing clinical workflows,
interpretability of the models, regulatory compliance, ethical
considerations, scalability, and validation in diverse patient
populations. The following sections of the paper will delve into
these critical considerations and discuss potential solutions to
ensure the successful implementation and utilization of CAD
systems in real-world clinical settings.

Limitations associated with
Parkinson’s disease

Disease heterogeneity: intra-class variance
and inter-class similarity

Medical conditions may have several etiologies. Moreover,
one etiology may lead to more than one disease (Coleman and
Tsongalis, 2009). Consequently, medical conditions are commonly
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FIGURE 3

Summary of the specific limitations in computer-aided diagnosis (CAD) for Parkinson’s disease (PD) associated with idiosyncrasies of the disease, as

addressed in Section Limitations associated with Parkinson’s disease: (1) During the labeling of datasets for supervised learning, several problems can

be encountered. (1A) Building a solution for di�erential diagnosis can be challenging due to the overlapping symptoms of PD and related disorders.

This challenge is especially significant during the initial phases of clinical diagnosis, where such solutions would be most useful. (1B) PD is known to

have several subtypes with implications for clinical treatment, but there is a lack of clear global consensus, adding another layer of complexity. (2) PD

being an age-related disorder, the control subjects used in age-pairing may have additional health conditions or factors that can a�ect their

(Continued)
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FIGURE 3 (Continued)

representatives as healthy individuals. (3) Due to the complexity of PD, there is a notable rate of misdiagnosis, even in specialized centers, particularly

during the early phases of clinical diagnosis. This hampers the accuracy of labels used in supervised learning solutions. (4) When acquiring data and

building a model, a simplification of the disease within the context of human biology is necessary, as it is the case with any other data-driven

solution. Consequently, any developed solution will have errors, particularly if the model is used in di�erent conditions than those it was designed

for. (5) Detecting PD in the prodromal phase is particularly challenging. A common approach is to employ known markers that increase the

probability of developing the disease, such as genetic mutations. However, the specificity of these markers to PD is variable. (6) Conducting

long-term longitudinal studies that are consistent in terms of acquisition protocol while maintaining low levels of drop-out rates is extremely di�cult

for PD, given its nature as a complex, long-term neurodegenerative disease.

TABLE 1 Overview of limitations and future directions at the three levels: disease-specific, task-specific, and technology-specific.

Limitations Directions

Parkinson’s disease

Disease heterogeneity Considering subgroups of PD and careful assessment of controls

Patients’ comorbidities Large and Long studies and control of unwanted correlations

Error rate at diagnosis Acknowledging errors and employing noise-labeled techniques

Extended times of disease progression Institutional incentives, importance of consistency in protocols

High variability of prodromal markers Multimodal prodromal markers, epigenetics changes

Lack of ground truth Objective measures, holistic multidisciplinary approach

Clinical brain imaging datasets

Complexity of brain imaging Multimodal approach, combination with clinical measures

Lack of standardization in acquisition Standardization of acquisition, sharing study assumptions

Lack of standardization in preprocessing Sharing raw data and reproducible code ability

Lack of standardization in annotation Assisted annotation with guidelines and unsupervised learning

Machine learning/deep learning

Generalization issues Avoid overfitting, control for spurious correlations

Algorithmic Bias Acknowledge algorithm bias and prioritize fairness strategies

Need for better interpretability Prioritize transparency and ethics, GDPR compliance

Model explainability Use explainable ML algorithms, employ interpretability methods

Model uncertainty Documentation of uncertainty sources, calibration methods

Costly systems to develop and maintain Pre-train models, cloud computing, decentralized ML

Security and privacy challenges Proactive security and privacy strategies

defined clinically or pathologically (instead of etiologically). PD
presents high variability at both prodromal and clinical phases
(He et al., 2018). We can refer to this variability as an intra-class
variance. However, another level of complexity exists due to the
overlap of PD symptoms with those from other diseases, which
calls for thorough differential diagnosis (Kalia and Lang, 2015). For
instance, patients with arterial hypertension may exhibit distinct
neuroimaging abnormalities detectable by brain MRI (van Veluw
et al., 2014), which may complicate the diagnosis of PD using
medical imaging techniques in these individuals. Thus, we can
find a high inter-class similarity. Finally, diseases are described
based on a definable deviation from a normal phenotype made
evident through symptoms, and pathological markers, to then
become grouped into categories. However, studies and taxonomies
struggle to find a consensus for PD subtypes (Albrecht et al., 2022).
Hence, studies may employ different subtypes to refer to the same
biological mechanism and therapy response.

Patients’ comorbidities

In addition to the aforementioned complexity, the onset age of
PD in patients is typically around 60 years, making it difficult to
differentiate symptoms caused by aging and other comorbidities
from those of PD (Deeb et al., 2019). For instance, common
comorbidities in PD patients, such as hypertension and diabetes,
have an unknown effect on the pathogenesis and progression of
PD (Santiago et al., 2017). This presents a twofold challenge: first,
it complicates the identification of a reliable set of control and
diseased subjects, making it difficult to distinguish between groups.
Second, due to the lack of knowledge regarding the effects of
comorbidities on PD onset and development, controlling for these
characteristics is challenging. As a result, researchers may face a
“lose–lose” situation, as ML models may make assumptions that
cannot be refuted or confirmed by the researcher. This situation is
also referred to as butterfly bias, in which a variable or feature may
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be considered both a confounder and a source of M-bias (Ding and
Miratrix, 2015).

To mitigate the effects of comorbidities and the heterogeneity
of PD, researchers often employ large sample sizes to account for
the variability in the population and the disease. For example,
datasets like the Parkinson’s Progression Markers Initiative (PPMI)
(Marek et al., 2011) and the Oxford Parkinson’s Disease Centre
discovery cohort (OPDC) (Lawton et al., 2015) acknowledge the
presence of subtypes and follow patients over extended periods,
presenting clinical data in addition to imaging data. Moreover,
studies frequently use statistical techniques such as propensity
score matching (Huang et al., 2013), stratification (Virreira Winter
et al., 2021), and multivariable regression (Pechevis et al., 2005) to
control for confounding variables. Another approach is to utilize
ML algorithms that can handlemultiple confounders and nonlinear
relationships between variables, such as random forest (Oprescu
et al., 2019) or support vector machine models (Westreich et al.,
2010).

Error rate at diagnosis

The aforementioned challenges are further compounded by the
difficulty of accurately diagnosing PD. According toHess andOkun
(2016), the misdiagnosis rate of PD can range from 10 to 20%
or greater, depending on clinician experience. Other studies have
reported misdiagnosis rates of 20%–30% in the early stages, with
the main causes being the failure to recognize atypical parkinsonian
disorders such as dementia with Lewy bodies or multiple system
atrophy (Poewe and Wenning, 2002). Consequently, researchers
must address the challenges of training models with noisy labeled
data (Karthik et al., 2021), where label noise can potentially degrade
model performance.

To address noisy labeled data several approaches have been
proposed, including semi-supervised learning, where a small set
of labeled data is combined with a large set of unlabeled data to
improve themodel’s accuracy (Adeli et al., 2018). Another approach
is active learning, where the model is iterative trained on a small
set of labeled data, and the most informative samples are selected
for annotation by a human expert, reducing labeling costs while
maintaining or even improving the model’s accuracy (Settles, 2009;
Garcia Santa Cruz et al., 2022a). Recent developments in DL have
led to the emergence of new techniques that can handle label
noise more robustly, such as the label Smoothing technique (Müller
et al., 2019) that reduces the impact of noisy labels on the loss
function by smoothing the label distribution. Ensemble techniques
also help mitigate the impact of label noise on model performance
by combining the predictions of multiple models, each trained on a
slightly different subset of the data (Adeli et al., 2018).

Extended times of disease progression

PD is characterized by a slow progression, with a period of
up to 20 years before the clinical phase (Kalia and Lang, 2015),
and can survive up to 20 years in the clinical phase (Hassan et al.,
2015), with a mean survival onset of 12 years (Rajput, 1992).

This slow progression impacts longitudinal follow-up of study
participants, which becomes difficult and prone to high dropout
rates and protocol changes. It also brings another important
dimension into play, as data subjects may showcase both different
ages and distinct PD stages. Moreover, assumed control subjects
may reveal PD symptoms in the long term, increasing the risk of
ascertainment bias.

The extended duration of longitudinal studies can lead to
higher rates of dropout and protocol changes. To mitigate these
issues, researchers can employ remote monitoring technologies
that allow patients to be monitored from their homes, reducing
the need for in-person visits. Wearable sensors can also provide
continuous, objective measurements of symptoms and mobility
(Kubota et al., 2016; Arroyo-Gallego et al., 2018). Additionally,
providing incentives to patients and institutions can help improve
retention rates (Smith et al., 2019). For brain imaging studies, it is
important to maintain consistent imaging protocols and analysis
methods to reduce the risk of acquisition bias (Castro et al., 2020).

Lack of specificity and variable penetrance
of prodromal markers

Finding markers for the prodromal phase of PD is complex in
many aspects. One of the key factors hindering the discovery of
such markers is the low frequency of the disease, which is estimated
to be under 2% (Muangpaisan et al., 2011). This low frequency
makes it challenging to find participants in the prodromal phase
of the disease, as large sample sizes are required for such studies.
To overcome this challenge, researchers often employ non-specific
markers to identify individuals who may be in the prodromal phase
of PD. These non-specific markers include rapid eye movement
sleep behavior disorder (RBD), hyposmia (reduced ability to smell),
depression, gastrointestinal symptoms, and mild motor symptoms.
However, the use of non-specific markers has limitations, as they
are not specific to PD andmay be present in individuals who do not
develop the disease (Durcan et al., 2019). Although specific markers
such as genetic markers have been identified, their use is limited by
their variable penetrance, which is often incomplete and dependent
on the population. Some of the most commonly associated genes
with PD are LRRK2, Glucocerebrosidase (GBA), and SNCA (Niotis
et al., 2022). This means that even if an individual has a genetic
marker associated with an increased risk of developing PD, there is
still a significant chance that they may never develop the disease.

Finding markers for the prodromal phase of PD is complex,
but one potential solution to overcome the challenge of low disease
frequency and the need for large sample sizes is to collaborate
with multiple research centers and establish consortium. Another
approach to identifying specific markers for the prodromal phase
of PD is to consider multiple sources of data, such as the hyposmia
test (Siderowf et al., 2012). Finally, to address the limitations
of genetic markers with incomplete penetrance, researchers can
focus on identifying epigenetic modifications associated with the
prodromal phase of PD, which may provide more accurate and
specific markers for early detection of the disease (Chen and Ritz,
2018).
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Lack of ground truth

In addition to the challenges of finding markers for the
prodromal phase, there are also challenges related to generating
accurate ground truth data for supervised learning. PD is not fully
understood yet, which can lead to errors in the models. Deliberate
idealisations are inherent in anymodel, but inaccurate assumptions
based on insufficient knowledge can lead to biased and inaccurate
representations. An example of this is the lack of understanding
about comorbidity effects. Disparities in these regards can affect
coherence between studies, as causal assumptions may vary across
research teams and over time. Conducting further research on the
disease could be a potential solution to enhance the understanding
of the disease. This research can include a better understanding of
the various aspects that contribute to the disease, such as adopting
a complex systems approach (Cohen et al., 2022). Another solution
is to develop more objective and quantitative measures of motor
symptoms using wearable sensors and digital technologies.

Current diagnosis relies on assessments by physicians, often
employing the current gold standard, the Unified Parkinson’s
Disease Rating Scale (UPDRS) (Movement Disorder Society Task
Force on Rating Scales for Parkinson’s Disease, 2003). Furthermore
efforts are underway to develop more objective and continuous
measures of motor symptoms using wearable sensors and digital
technologies (Parisi et al., 2015; Lu et al., 2021). These emerging
technologies can provide more accurate and reliable data for the
diagnosis and monitoring of PD (Kubota et al., 2016). By replacing
subjective evaluations with objective measurements, the accuracy
of diagnoses may be improved, leading to earlier identification
and treatment of PD. Further research on the missing link
between genetic and environmental causes of the disease can also
contribute to a better understanding of PD (Hill-Burns et al.,
2017). Additionally, standardizing diagnostic criteria and protocols
across research teams and clinical settings can increase coherence
between studies and improve the accuracy of the diagnosis. One
such criterion is the UK Brain Bank criteria (Postuma et al., 2018).
Enhanced collaboration and communication between researchers
and clinicians may serve as a valuable means to reinforce the
aforementioned efforts.

Limitations associated with clinical
brain imaging datasets

Diversity and complexity of in vivo imaging
brain markers

The pathology underlying PDmotor symptoms such as tremors
and bradykinesia is mainly associated with the loss of dopaminergic
neurons in the substantia nigra and other gray matter alterations
visible through brain imaging. However, non-motor symptoms of
PD such as hyposmia, sleep disturbances, and depression do not
present a clear in vivo imaging brain marker, even though some
NMS-related brain alterations have been described. In particular,
Prell (2018) state that imaging NMS characteristics may require
different modalities, e.g., rs-fMRI for fatigue, fMRI and FDG-PET
formild cognitive impairment. In addition, studies have shown that
quantitative iron imaging techniques such as R2*, SWI, and QSM

are reliable markers of iron content in PD. These measurements
have also been found to correlate with the severity of motor
symptoms. Among these techniques, QSM has been identified as
more robust and reproducible than R2* and is more adequate for
use in multicenter studies (Pyatigorskaya et al., 2020). Finally, some
authors have even discouraged the routine use of neuroimaging
techniques in clinical practice for PD (Pagano et al., 2016). As stated
by Pagano et al. (2016), “despite significant evidence for the utility
of neuroimaging in assessing parkinsonian patients, none of the
neuroimaging techniques is specifically recommended for routine
use in clinical practice.”

Therefore, the impact of this variety is threefold. First, the
symptoms may not associate with structural or functional brain
patterns. Second, when existing, such patterns require particular
brain imaging modalities. Finally, such patterns may not be specific
to PD. On top of these three circumstances, the temporal evolution
of the disease adds another layer of complexity. Each stage calls
for different symptoms, which in turn require dedicated imaging
modalities with different diagnosis specificity. In this light, accurate
PD subtyping becomes challenging, as obtaining a complete view
of the brain manifestations of PD symptoms requires image
acquisition of several modalities or the employment of multimodal
approaches (Saeed et al., 2017; Chougar et al., 2020; Albrecht et al.,
2022).

One potential solution to address this issue is to use
a combination of multiple imaging techniques. Multimodal
approaches can provide a more complete and accurate picture
of the disease by capturing different aspects of brain function
and structure, as well as the density of neurotransmitter receptors
such as dopamine receptors. Additionally, clinical assessments can
be supplemented by specific neuropsychological questionnaires or
physiological tests, with subsequent confirmation by imaging or a
biochemical marker, as different modalities are suitable at different
stages of disease progression (Michell et al., 2004). Moreover, the
use of multi-modal data, combining clinical, motor, cognitive,
and neuroimaging data, can aid in subtyping PD and potentially
identifying correlations between the pathology manifested in the
brain and the motor and non-motor symptoms of the patient
(Albrecht et al., 2022). However, it is important to note that
using multiple imaging modalities can also pose some challenges,
such as the need for specialized expertise, the complexity of data
integration (Behrad and Abadeh, 2022), and the increased cost and
time required for imaging and analysis.

Lack of standardization in acquisition,
preprocessing, and annotation pipelines

After image acquisition, another set of problems may
compromise research. First, variations in the acquisition
parameters may alter the observed changes in longitudinal studies.
Chua et al. (2015) showed how variability in MRI acquisition
parameters between scans can confound observations. Then, the
diversity of preprocessing pipelines across studies presents another
dimension for potential unwanted interactions and errors. For
instance, the exclusion criteria for head motion may vary across
studies without common criteria. Strother (2006) highlighted how
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the preprocessing steps interact with every decision taken during
the design and execution of fMRI experiments. The authors argue
that “applying a new processing pipeline to a raw dataset may
result in significantly modified spatial activation patterns as a
result of changing/optimizing preprocessing techniques and/or the
data analysis approach.” Similarly, Power et al. (2017) identified
several contributors to global fMRI signals such as hardware
artifacts and head motion that were not removed from scans
through denoising techniques, affecting the observed covariances.
Bhagwat et al. (2021) underscored the variability introduced
by preprocessing in neuroimaging pipelines. Hence, the lack of
standardization in acquisition, preprocessing, and annotation
pipelines can lead to unwanted interactions and errors, which has
significant implications for the reliability and reproducibility of
neuroimaging research (Brauneck et al., 2023).

To address this issue, it is crucial to develop and validate
standardized protocols and criteria for data acquisition,
preprocessing, and analysis. This can be achieved through a
variety of approaches, such as establishing international consortia,
promoting open data sharing, and providing training and resources
for researchers. For example, the International Society forMagnetic
Resonance in Medicine (ISMRM) has developed several standards
for MRI data acquisition and analysis, including quantitative
MR (Weingärtner et al., 2022). In addition, promoting open
data sharing and encouraging researchers to openly share their
raw data and analysis pipelines can help to identify potential
sources of variability and errors in data processing and analysis.
This can facilitate the development of more robust and reliable
methods for data preprocessing and analysis. Several initiatives
have already been developed to promote open data sharing in
neuroimaging, such as the OpenfMRI (Poldrack et al., 2013) and
NeuroVault (Gorgolewski et al., 2015) repositories. Furthermore,
educating researchers about the importance of standardization
in neuroimaging research (Laird et al., 2011) and providing
them with the necessary tools and resources to implement
standardized protocols and criteria in their research is crucial,
including standardization of the metadata as a way to reflect
the causal and anti-causal assumptions made during the data
collection and annotation (Garcia Santa Cruz et al., 2022b).
Further, standardization of the annotation pipeline is important
to improve the consistency and quality of annotations. To tackle
this issue, it is important to have standardized guidelines and
procedures. This can reduce misinterpretation, which may result
in inconsistency, making the subsequent training of the machine
learning solution difficult (Miceli et al., 2020). Additionally,
it’s crucial to have a good way to integrate annotations from
multiple annotators, carefully considering how to deal with
labeling merging in unmatched results when and the seniority
of the experts. Furthermore, as labeling is an expensive task,
unsupervised or semi-supervised techniques could be employed
to generate cheaper but potentially more consistent labels (dos
Santos Ferreira et al., 2019).

To fully exploit the potential for personalized healthcare,
collecting metadata may be necessary. However, current General
Data Protection Regulation (GDPR) regulations impose limitations
to ensure both data privacy and security. To address this challenge,
several approaches have been proposed, including federated
machine learning, multi-party computation, and differential
privacy. These methods provide a win-win solution by enabling

the collection of necessary data while preserving the privacy and
security of sensitive information (Brauneck et al., 2023).

This can be achieved through training programs, workshops,
and online resources that provide guidance on best practices
for data acquisition, preprocessing, and analysis in neuroimaging
(Borghi and Van Gulick, 2018). The development of established
protocols in standardization and analysis, such as those proposed
for other neurodegenerative diseases like the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (Wyman et al., 2013),
can also serve as important models for promoting consistency and
reliability in neuroimaging research.

Limitations associated with machine
learning/deep learning

Generalization issues that hinder
transferability

Neural networks (NNs) have been shown to be highly effective
in approximating complex functions and achieving accurate
predictions by leveraging large and high-quality datasets. However,
despite demonstrating good performance on the training data,
there is no guarantee that the model will continue to perform well
on new and unseen data. This phenomenon, known as overfitting,
occurs when the model is too closely tailored to the training data,
and thus, is not generalizable to new data. Out-of-distribution
and out-of-domain examples can cause neural networks to learn
incorrect correlations and make inaccurate predictions. Common
causes of overfitting include domain shift (Kondrateva et al., 2021),
task mismatch (Castro et al., 2020), and catastrophic forgetting
(Gupta et al., 2021). Poor generalization can lead to unreliable
and incorrect predictions on real-world tasks where the data
distribution may differ significantly from the training data (Yagis
et al., 2019; Ge et al., 2023). In the context of CAD for PD, this
may result in incorrect predictions that could lead to misdiagnosis
or failure to detect the disease, ultimately resulting in incorrect
treatment or delayed diagnosis.

To reduce overfitting, techniques such as regularization
(Kukačka et al., 2017) and early stopping (Prechelt, 1998) can
be employed. Data augmentation techniques can also expand
the dataset size and improve internal generalization (Chlap
et al., 2021). However, data augmentation alone cannot address
demographic representativeness issues. Thorough internal and
external validation is essential to ensure reliable and accurate
model performance, especially for new and unseen data (Garcia
Santa Cruz et al., 2021). Cross-validation techniques such as
stratified cross-validation (Zeng and Martinez, 2000) and leave-
one-out cross-validation (Hastie et al., 2009) can be used for
internal validation, while external validation can be achieved
through external datasets. These techniques can enhance model
transferability and promote generalizability.

Additionally, when dealing with a small sample size, as is often
the case in biomedical datasets, splitting the dataset for cross-
validation may lead to a loss of the algorithm’s generalization
capacity. This limitation arises from the fact that when the sample
size is small, dividing it into training and validation sets further
reduces the amount of data available for training, potentially
hindering the algorithm’s ability to generalize well. Despite the
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conventional wisdom that attributes this small generalization error
to properties of the model family or regularization techniques used
during training (Zhang et al., 2021), it has been demonstrated
that even with explicit regularization, state-of-the-art convolutional
networks can fit random labeling of the training data, suggesting
that these models have enough capacity to memorize the
training data. A potential solution is to employ distribution-free
performance bounds (Jakubovitz et al., 2019), which have been
successfully implemented in neuroimaging (Górriz et al., 2019;
Jimenez-Mesa et al., 2023).

To address data drift, various techniques can be employed.

Calibration techniques (Wald et al., 2021) and appropriate
metrics for evaluating model generalization (Jiang et al., 2019)

can be used. Additionally, selecting the appropriate model
architecture and hyperparameters can significantly enhance the
model’s generalization ability. Techniques such as grid search or
Bayesian optimization (Kandasamy et al., 2018) can be employed
to optimize hyperparameters. Furthermore, transfer learning
has been demonstrated as an effective approach for improving
model generalization, particularly when working with limited data
(Yosinski et al., 2014).

Another big issue that can hinder the generalization of models
is when they fail to learn the desirable patterns that characterize
the phenomena we are trying to model, and instead learn spurious
correlations. This can result in the model learning potential
confounders, colliders, and other unwanted biases.

To address these issues, it is important to carefully evaluate the
data used to train the model, identify potential confounders and
colliders biases, and use appropriate statistical methods to account
for them (Wang et al., 2018). Additionally, confounding removal
strategies such as domain adaptation techniques can be employed
during the harmonization phase (Dinsdale et al., 2021) and during
the training process (Qin et al., 2020). Finally, it is crucial to
regularly monitor the performance of the model and validate its
results against independent and temporally updated data sets to
identify and correct potential unwanted biases (Tamburri, 2020).

Algorithmic bias
This can be considered an extension of a generalization issue.

Algorithmic bias is another significant challenge inML, particularly
in medical diagnosis and other decision-making applications.
Societal biases and data acquisition biases can result in systematic
and repeatable errors that lead to unfair outcomes and lower
accuracy for certain groups (Ricci Lara et al., 2022). It is essential
to address these biases in the design, training, and evaluation of
NNs to ensure fairness and avoid perpetuating existing inequalities.
These biases can result in systematic and repeatable errors, leading
to unfair outcomes that favor certain groups over others, ultimately
lowering the accuracy of the recommendation for some patient
groups, particularly when there are racial biases. These biases can
originate from existing inequality (Ricci Lara et al., 2022) or can
also stem from selection bias introduced during the acquisition
process (Garcia Santa Cruz et al., 2022b).

For example, Obermeyer et al. (2019) identified some systemic
conditional disparities in risk scores based on the medical history
of Black patients. In such cases, bias-correcting techniques can
be employed (Wiens et al., 2020). Bias can also be introduced

during the data acquisition process, resulting in technical debt and
downstream effects known as data cascades (Sambasivan et al.,
2021). Moreover, it is essential to address the issue of unwanted
biases in the data used for current AI systems, as these systems
not only have the risk of making incorrect predictions, but also of
perpetuating and amplifying biases present in the data (Zhao et al.,
2017).

The ML community has made interdisciplinary efforts to
address the aforementioned issues, leading to the development of a
range of solutions that fall under the umbrella of fairness (Mehrabi
et al., 2021). By implementing such strategies in algorithm
design, training, and evaluation, performance across groups can
be improved, thereby mitigating the risk of unfairness in the final
solution. These solutions typically target characteristics that have
traditionally been the source of unfair discrepancies, such as gender
and ethnicity. However, it is also crucial to ensure that algorithms
perform well in cases where diseases have subgroups, such PD
subtypes (Thenganatt and Jankovic, 2014) and varying degrees
of disease penetrance (Espay et al., 2017). In such cases, similar
metrics can be used, with the subgroups or disease penetrance
considered as protected attributes.

Need for better interpretability

Another significant issue with NNs is their inability to
accurately represent uncertainty in their predictions (Abdar et al.,
2021). Since NNs are deterministic, they cannot capture the notion
of what they know and what they do not know, or the confidence
level of their predictions. Furthermore, current NNs are limited
to accessing the knowledge contained in the dataset. This lack
of uncertainty estimation can lead to overconfidence in their
predictions, which can be problematic in critical applications such
as medical diagnosis or self-driving cars.

Before implementing CAD systems for PD as decision-
making tools in clinical practice, it is essential to establish
an interpretability strategy (Chan et al., 2020). CAD systems
with low interpretability can have severe consequences, such as
decreased trust and acceptance among clinicians and patients,
misdiagnoses, and ineffective treatment strategies. A transparent
and understandable model can help clinicians validate the
system’s predictions and ensure that the model is not making
decisions based on spurious correlations or biases. Additionally,
interpretability can help researchers gain new insights into PD and
refine the diagnostic criteria.

The lack of uncertainty estimation can lead to overconfidence
in their predictions, which can have severe consequences such
as misdiagnoses and ineffective treatment strategies. Therefore,
it is essential to establish an interpretability strategy before
implementing CAD systems in clinical practice. Furthermore, the
limitations of current explainability methods used in ML decision-
making systems suggest that unless there are significant advances in
explainableML, wemust treat these systems as black boxes, justified
by their reliable and experimentally confirmed performance.
Finally, it is recommended that healthcare workers exercise caution
when using explanations from ML systems and regulators be
judicious in listing explanations among the requirements needed
for clinical deployment of ML (Ghassemi et al., 2021).
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Recent regulations, such as the GDPR in the European Union
(EU), emphasize the right to be informed and the right to contest an
automated decision. In such cases, interpretability of AI becomes
crucial for auditing the decision-making of automated agents
such as ML models. In particular, Article 22 of the GDPR deals
with the rights related to automated individual decision-making
since data subjects cannot be subject to a decision based solely
on automated processing (Council of European Union, 2016).
Additionally, Articles 12 and 13 specify the right to be informed
about the use of their data in an easily understandable and
accessible manner. The most common use cases for participant
data fall into two main scenarios: (1) data subjects provide their
data to train AI models, and (2) data subjects receive a result
from an AI model after providing some data. The first scenario
requires informing the participants about the purpose and usage
of their data. However, the second scenario requires additional
clarification, as the participants should understand how a decision
was made and, in particular, which input data was relevant for
obtaining a specific result.

To meet the above requirements, ML solutions must be
designed with transparency inmind. SomeML approaches produce
models that are inherently easier to inspect. Decision tree predictive
models are popular due to their intelligibility and simplicity.
However, this approach does not suit all tasks. Essentially, models
optimize a function that draws the boundary to separate the given
classes (e.g., healthy vs. diseased) by grouping nearby instances.
However, the definition of proximity differs across ML learners
and interpretability measures become complex. For instance,
random forest methods constitute an evolution of decision trees
but at the cost of intrinsic interpretability since their internal
model consists of a collection of decision trees, obfuscating the
“reasoning” of the trained model (Nair et al., 2013). Another
approach includes tracking the decision-making process on CNNs.
For instance, Magesh et al. (2020) employ Local Interpretable
Model-Agnostic Explainer (LIME) to increase the explainability of
CNN-basedmodels for PD diagnosis. Two key elements to improve
interpretability are solutions to improve model explainability and
model uncertainty.

Model explainability
Model explainability refers to the ability to understand how

a ML model makes its predictions. It is important because in
critical applications, such as healthcare or finance, it is necessary
to understand why the model makes certain decisions, especially
when human lives or significant resources are at stake. For example,
if a model is predicting whether a patient has PD or make a
recomendation about the treatment, it is important to know which
factors the model is considering in its decision-making process.

Explainability and interpretability terms are is frequently used
interchangeably and for this work, we do not distinguish between
them. Of course, interpretability tools vary across ML methods,
but there are some important methods worth mentioning that can
facilitate the interpretability of the results. Molnar (2020) provides
an overview of the available techniques for ML interpretability.
The author distinguishes between intrinsic and post hoc methods.
The first group concerns models whose simple structure permits
human interpretation, e.g., short decision trees. The second group
of methods are used after model training. Additionally, the author

divides interpretability methods into model-specific and model-
agnostic. The author provides yet another criterion to separate the
methods into two groups, i.e., local (for methods that explain a
particular result) and global (for methods that explain the whole
model behavior) interpretability.

Aside from the above, solution design can impact model
interpretability as well. Often models are designed in an end-to-
end way that attempts to map input data with the final result
with a single model. For instance, a medical imaging CAD
system can be designed as a chain of several models, with the
first dedicated to finding pathologies and the subsequent models
mapping pathologies to diseases or conditions (e.g., through several
one class classifiers) (Vega, 2021). This approach eases solution
maintainance and increases interpretability, allowing inspection of
the intermediate results.

To address this challenge, researchers have proposed various
methods for interpreting and explaining the decisions of ML
models, including model-agnostic techniques such as LIME (Visani
et al., 2022) and SHapley Additive exPlanations (SHAP) (Kaur
et al., 2020), as well as model-specific approaches such as attention
mechanisms (Vaswani et al., 2017) and gradient-based attribution
methods (Ancona et al., 2019).

Model uncertainty
In the context of medical diagnosis, the concept of model

uncertainty plays a crucial role in determining the degree of
confidence or uncertainty that a model has in its predictions.
This consideration is particularly pertinent given the high stakes
involved in clinical decision-making. The degree of certainty or
uncertainty in a model’s output is a crucial factor in determining
appropriate actions to be taken based on the model’s predictions.
As such, accounting for model uncertainty can enhance the
transparency and reliability of medical diagnosis, leading to more
effective treatment strategies and improved patient outcomes.

Uncertainty in ML can stem from multiple sources. Some
of them include data variance, lack of representativity in the
data sample, label noise, and the intrinsic imperfections of
any ML model developed from such data. The literature also
refers to these types of uncertainty as systematic, aleatoric and
epistemic, (Hüllermeier and Waegeman, 2021; Gal et al., 2022).
Most of these issues cannot be fixed a posteriori and must
be avoided through careful data acquisition design. However,
documenting uncertainty sources and quantifying its magnitude
in data, labels and model is of uttermost importance, in the same
way we should document other aspects such as the representativity
of the sample. This information is key to assess the generalization
power of the solutions to new settings. For instance, reporting
probability estimates together with the model prediction can
indicate the model prediction confidence. However, these estimates
may not accurately reflect model uncertainity calling for calibration
methods (Lemay et al., 2022).

Costly systems to develop and maintain

ML solutions are also expensive in terms of data and
computation. Developing and training ML models requires a
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substantial amount of data, computing power, and specialized
expertise. Acquiring large and diverse datasets can be challenging,
and data collection, cleaning, and preprocessing can be time-
consuming and labor-intensive (Ngiam andKhor, 2019).Moreover,
the development and training of ML models often require
specialized hardware, such as Graphics Processing Units (GPUs),
which can increase energy consumption and carbon footprint
(Patterson et al., 2021). It is important to consider the
environmental impact of ML and take steps to reduce it, such as
using energy-efficient hardware or exploring alternative training
methods that require fewer computing resources (Wang et al.,
2020).

In addition, ML models require ongoing monitoring, updating,
and maintenance to ensure their continued accuracy. As data
changes over time, the models may need to be retrained or
updated to account for new patterns or trends. In the case of
PD, this can be particularly challenging due to the variability in
disease progression across patients, making it difficult to develop
models that accurately capture the underlying patterns of the
disease. Furthermore, implementingML systems in clinical practice
requires careful consideration of regulatory and ethical concerns
to ensure patient safety and privacy. ML models used in clinical
practice must undergo rigorous testing and validation to ensure
their safety, efficacy, and reliability. The validation process involves
evaluating the model’s performance on independent datasets and
comparing it to other established diagnostic methods (Liu et al.,
2019). Additionally, models must be regularly audited to identify
and mitigate biases and errors that may affect their performance
(Reddy et al., 2020).

To address the challenges of cost and development associated
with ML, there has been a concerted effort to develop open-
source platforms and tools that make ML more accessible to
researchers and clinicians. For instance, several open-source
libraries, including TensorFlow (Abadi et al., 2016a), PyTorch
(Paszke et al., 2019) andMONAI (Cardoso et al., 2022) provide pre-
built ML models and algorithms that can be readily adapted and
customized for specific applications. In addition, cloud computing
platforms, such as Amazon Web Services and Google Cloud, offer
scalable and cost-effective solutions for training and deploying ML
models. Moreover, there is a growing trend toward collaborative
and decentralized approaches to ML development (Castiglioni
et al., 2021). One such approach is federated learning, which
allows multiple parties to train a shared ML model without
sharing their data, thus preserving data privacy and security
(Tedeschini et al., 2022). Another approach is to use blockchain
technology to create decentralized ML models that are transparent,
auditable, and resistant to tampering (Neelakandan et al., 2022).
These developments are expected to enhance the accessibility
and affordability of ML solutions, thereby facilitating their wider
adoption and implementation in clinical practice.

Security and privacy challenges

Healthcare institutions are frequent targets of malicious
hackers, resulting in data breaches and ransomware attacks (Branch
et al., 2019; Devi, 2023). In March 2023, the Hospital Clinic
de Barcelona, which serves half a million people, suffered a

ransomware attack by the RansomHouse group, resulting in the
theft of 4.4 TB of data (Toulas, 2023). Healthcare ML models often
deal with very sensitive patient data, making them attractive targets
for malicious attacks.

Adversarial training is a technique used to improve the
robustness of ML models against adversarial attacks (Madry et al.,
2017). It involves training the model on adversarial examples
generated by an adversary system to make the model more resilient
to similar attacks. However, these techniques can also be used
maliciously. Adversarial attacks can cause the model to make
incorrect predictions, which could potentially expose personal
information from healthcare ML models. In membership inference
attacks, an adversary attempts to determine whether a particular
individual’s data was used to train a machine learning model (Hu
et al., 2022). In model inversion attacks, the aim is to reconstruct
an individual’s data from the outputs of a machine learning model.
This can be achieved by generating adversarial examples that
maximize the likelihood of the individual’s data, given the model
outputs (Fredrikson et al., 2015). These attacks highlight the need
for robust security measures to be in place to protect healthcare ML
models from malicious attacks.

The most effective safety measure for healthcare ML models
is to restrict access to the trained models to authorized personnel.
Additionally, privacy-preserving machine learning techniques such
as differential privacy and homomorphic encryption can help
prevent these attacks (Abadi et al., 2016b; Aono et al., 2017). It is
advisable to take a proactive approach to healthcare privacy and
security during the solution design instead of a reactive approach
(Song et al., 2019; Bhuyan et al., 2020).

Concluding remarks and perspectives

During recent years, both the ML and the medical community
have begun to consider data quality as the most crucial
factor impacting the performance of the solutions and their
robustness, (Sambasivan et al., 2021). However, acquiring high-
quality data, building a suitable model for the task, and determining
the appropriate use for such models, remain challenging objectives
toward clinically relevant models. In particular, Sambasivan
et al. (2021) insist on building incentive structures across all
stakeholders, stating that “many practitioners described data work
as time-consuming, invisible to track, and often done under
pressures to move fast due to margins–investment, constraints,
and deadlines often came in the way of focusing on improving
data quality.” Data bootstrapping is yet another source of
issues in high-stakes AI domains, as many researchers begin
the AI/ML work employing existing data or data collected
for non-AI purposes that leads to poor generalization. It is
essential to ensure that ML models are rigorously validated
and tested before they can be used in clinical practice. The
employment of datasets from multiple independent studies can
boost the statistical power and lead to more accurate, reliable
and reproducible research. In ML, a common practice to this
end is to mix several datasets. However, if the mixed datasets
do not share certain degree of methodological similarity, biases
may be introduced due to differences in acquisition, preprocessing
or annotation.
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The circumstances previously described hinder the availability
of large datasets containing multiple imaging modalities as large
datasets often consist of multi-center cohorts employing different
acquisition devices, protocols and pipelines. Overall, developing
and maintaining ML systems for clinical practice can be a costly
and time-consuming process that requires significant expertise
and resources. However, the potential benefits, such as improved
diagnosis and treatment outcomes for patients with PD, make it
a worthwhile investment. The use of CAD tools to interpreted
brain images is the context of PD is very promising. However,
as previously mentioned, these solutions will be used as assisting
tools in a very specific context and under specialized supervision
and must pass a series of verification before they can be used, as
is the case with other medical products or treatments. To achieve
this, the models must be accompanied by interpretability methods
to ensure that clinicians can understand how the model makes
its predictions.

While this review focuses primarily on brain imaging, it has
become increasingly clear that a single measure is unlikely to be
sufficient for diagnosing PD in the foreseeable future. Instead, a
combination of measures will likely be necessary. The most critical
aspect of a biomarker is not its ability to diagnose PD in its early
stages, but rather its ability to reflect the disease’s pathogenesis
and progression. By using a multimodal approach that combines
various imaging biomarkers, clinicians can make early, accurate,
and objective diagnostic decisions, identify neuroanatomical and
pathophysiological mechanisms, and evaluate disease progression
and therapeutic responses to drugs in clinical trials.

A common approach in developing multimodal CAD systems
involves combining multiple imaging modalities as well as
leveraging ensemble learning to integrate data from various
sources for obtaining the final result. A concrete example of
a multimodal approach in PD is the employment of multiple
modalities to characterize a specific pathological process in
certain regions of the brain. For instance, multimodal approaches
employing hybrid images created through the integration of
different MRI parameters offer a valuable tool. By combining
T1-, T2*-, and diffusion-weighted MRI, Barbagallo et al. (2016)
proposed to enable the detection and analysis of macro- and
micro-structural abnormalities in the nigrostriatal pathway. The
key benefit of integrating hybrid images enhances the accuracy
and reliability of CAD systems by capturing diverse aspects of
neurodegeneration.

Another example of a multimodal approach consists in
combining MRI techniques, particularly those visualizing
pathological changes in the substantia nigra using diffusion, iron-
sensitive susceptibility, and neuromelanin-sensitive sequences,
which offer a more accessible imaging tool. However, these
techniques may be insufficient for phenotyping or prognostication
due to the heterogeneous nature of PD resulting from extranigral
pathologies. In Siderowf et al. (2023) highlight the emerging role of
retinal optical coherence tomography as a non-invasive technique
to visualize structural changes in the retina, which can serve as
potential biomarkers for early diagnosis and prognostication in PD.
Ensemble learning, a popular technique employed in multimodal
CAD systems, plays a crucial role in fusing information from
diverse data sources. Through ensemble learning, multiple models

are trained independently on different subsets of data or using
distinct feature representations. Ensemble learning had been
successfully applied in PD classification using multimodal voice
and speech data (Ali et al., 2021).

Recent promising markers that use the biochemistry of alpha-
synuclein seed amplification assays have shown potential (Siderowf
et al., 2023). For instance when recommending DBS as a therapy
option for PD, it is important to consider genetic information,
specifically whether the patient is a carrier of mutations in the
glucocerebrosidase (GBA) gene. PD patients with GBA mutations
are at particularly high risk for cognitive impairment with DBS
due to dysfunction of the glucocerebrosidase (GCase) enzyme,
resulting in more rapid accumulation and spread of Lewy
bodies. Recent research has shown that PD patients experience
cognitive impairment after DBS, and this risk is even greater
for those with GBA mutations. Therefore, models that assist
with therapy recommendations for PD patients should carefully
evaluate whether patients are carriers of GBA mutations before
recommending DBS as a treatment option (Pal et al., 2022).

Furthermore, there is an extended literature of ML models
that have the potential to become CAD systems in the future
from diagnosis and monitoring of PD, by providing more accurate
and objective measurements of motor symptoms and disease
progression. However, until this model are properly validated there
are far to be ready for its used in clinical settings to ensure their
safety and effectiveness in clinical practice.

Ultimately, our review emphasizes the critical importance
of taking a multidisciplinary approach and putting in extensive
effort during the data preparation and clinical validation phases
of developing ML models. It is crucial to recognize that
proper design and clinical validation may be undervalued
in comparison to the training of ML models, but they are
indispensable for data-driven CAD solutions that are safe for a
clinical use. We hope that this review will inspire both future
users and developers of these systems in the context of MRI
for PD.
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