Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Artificial Intelligence Based Robotic Automation of Manual Assembly Tasks for Intelligent Manufacturing
SIMETH, Alexej; PLAPPER, Peter
2023In von Leipzig, Konrad; Sacks, Natasha; Mc Clelland, Michelle (Eds.) Smart, Sustainable Manufacturing in an Ever-Changing World
Peer reviewed
 

Documents


Texte intégral
210121_AI-based-robotic-automation-of-manual-assembly_preprint.pdf
Preprint Auteur (677.12 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Increasing product customization and shortening product life cycles in an ever-changing world is challenging for automation. This is especially true for assembly tasks, requiring a high level of perception, skill, and adaptability. With the rise of smart manufacturing, intelligent manufacturing, and other aspects related to Industry 4.0, the hurdles for automation of the aforementioned tasks are getting reduced. Especially Artificial Intelligence (AI) is expected to enable smart and flexible automation since it is possible to deduct decisions from unknown multidimensional correlations in sensor data, which is critical for the assembly of highly customized products. In this research paper, three different conventional and AI-based glue detection models are proposed with the target to automate a gluing process in a manual assembly of highly customized products in a batch size one production scenario. A conventional, one-dimensional rule-based model, and two hybrid models using a support vector machine image classifier (SVM) and either Tamura features or convolutional neural network (CNN) feature extraction are presented and compared. The obtained results demonstrate the efficiency and robustness of AI-based algorithms, as the CNN and SVM hybrid model outperforms the other two approaches achieving a prediction accuracy of >99\% at the fastest classification speed.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
SIMETH, Alexej  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
PLAPPER, Peter ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Artificial Intelligence Based Robotic Automation of Manual Assembly Tasks for Intelligent Manufacturing
Date de publication/diffusion :
2023
Nom de la manifestation :
International Conference on Competitive Manufacturing
Date de la manifestation :
from 09-03-2022 to 11-03-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Smart, Sustainable Manufacturing in an Ever-Changing World
Editeur scientifique :
von Leipzig, Konrad
Sacks, Natasha
Mc Clelland, Michelle
Maison d'édition :
Springer International Publishing, Cham, Inconnu/non spécifié
ISBN/EAN :
978-3-031-15602-1
Pagination :
137-148
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 18 juillet 2023

Statistiques


Nombre de vues
153 (dont 8 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
6
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu