SAIFALDAWLA, Almoatssimbillah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
ORTIZ GOMEZ, Flor de Guadalupe ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
DAOUD, Saed Shaheer Awad ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
NGSO-To-GSO Satellite Interference Detection Based on Autoencoder
Date de publication/diffusion :
2023
Nom de la manifestation :
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Toronto, Canada
Date de la manifestation :
from 05-09-2023 to 08-09-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, Canada, Sept. 2023
Maison d'édition :
IEEE
Pagination :
7
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16193290 - Leveraging Artificial Intelligence To Empower The Next Generation Of Satellite Communications, 2021 (01/09/2022-31/08/2025) - Eva Lagunas
Intitulé du projet de recherche :
U-AGR-7111 - C21/IS/16193290/SmartSpace - LAGUNAS Eva
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
C21/IS/16193290
Subventionnement (détails) :
This work is financially supported by the Luxembourg National Research Fund (FNR) under the project SmartSpace (C21/IS/16193290).
Dataset Description: Time series of received signal (time and frequency domain)
Commentaire :
This dataset has been used in this work (please cite this reference in your work if you make use of this dataset):
A. Saifaldawla, F. Ortiz, E. Lagunas, A. B. M. Adam and S. Chatzinotas, “GenAI-Based Models for NGSO Satellites Interference Detection,” in IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 904-924, 2024, doi: 10.1109/TMLCN.2024.3418933.
A. C. Boley and M. Byers, "Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth," Scientific Rep., vol. 11, no. 1, May 2021.
B. Al Homssi et al., "Next Generation Mega Satellite Networks for Access Equality: Opportunities, Challenges, and Performance," in IEEE Communications Magazine, vol. 60, no. 4, pp. 18-24, April 2022
On-board spectrum monitoring',https://artes.esa.int/projects/ board-spectrum-monitoringobsm, accessed May 2023
H. Zhang, D. Ren, and F. Jiang, "A Beam Search-Based Channel Allocation Method for Interference Mitigation of NGSO Satellites with Multi-Beam Antennas," Aerospace, vol. 9, no. 4, p. 177, Mar. 2022
S. K. Sharma, S. Chatzinotas and B. Ottersten, "In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites", International Journal of Satellite Communications and Networking, vol. 34, pp. 11-39, 2016
C. Wang, D. Bian, S. Shi, J. Xu, and G. Zhang, "A Novel Cognitive Satellite Network With GEO and LEO Broadband Systems in the Downlink Case," in IEEE Access, vol. 6, pp. 25987-26000, 2018
M. Jalali, F. G. Ortiz-Gomez, E. Lagunas, S. Kisseleff, L. Emiliani and S. Chatzinotas, "Radio Regulation Compliance of NGSO Constellations' Interference towards GSO Ground Stations," 2022 IEEE 33rd Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Kyoto, Japan, 2022
M. A. Vazquez et al., "Machine Learning for Satellite Communications Operations," in IEEE Communications Magazine, vol. 59, no. 2, pp. 22-27, February 2021.
F. Ortiz et al., "Onboard Processing in Satellite Communications Using AI Accelerators," Aerospace, vol. 10, no. 2, p. 101, Jan. 2023
P. Henarejos, M. A. Vazquez and A. I. Perez-Neira, "Deep Learning for Experimental Hybrid Terrestrial and Satellite Interference Management," 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019
L. Pellaco, N. Singh and J. Jaldén, "Spectrum prediction and interference detection for satellite communications," Advances in Communications Satellite Systems. Proceedings of the 37th International Communications Satellite Systems Conference (ICSSC-2019), Okinawa, Japan, 2019
CelesTrak: Current GP Element Sets https://celestrak.org/NORAD/ elements, accessed April 2023
G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge University Press, 1922
Satellite frequency bands" https://www.esa.int/Applications/ Telecommunications Integrated Applications/Satellite frequency bands.accessed May 2023.
Application for Fixed Satellite Service by Space Exploration Holdings, LLC", SAT-LOA-20200526-00055 / SATLOA2020052600055, Filed By William Wiltshire https://fcc.report/IBFS/SAT-LOA-20200526-00055, accessed May 2023
P. D. Welch, "The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms," IEEE Transactions on Audio and Electroacoustics, vol. 15, pp. 70-73, 1967
Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge, MA, USA:MIT Press, 2016. Chapter 14, Autoencoders