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Abstract—Recently, non-geostationary orbit (NGSO) satellite
communication constellations have regained popularity due to
their ability to provide global coverage and lower-latency con-
nectivity. However, the new wave of Low Earth Orbit (LEO)
satellite constellations operate on the same spectral bands as
legacy satellites in geosynchronous orbit (GSO), which concur-
rently access the electromagnetic spectrum. Even if international
regulations are in place, such increased spectral congestion will
result in interference events. Therefore, both regulator entities
and GSO operators have a high interest in detecting illegal or
unlicensed NGSO interference sources. In this work, we simulate
a realistic downlink interference scenario by emulating an actual
commercial NGSO orbit whose signal is eventually received in a
GSO receiver that is pointed toward a specific GSO satellite. We
design an autoencoder deep neural network and we evaluate its
performance considering both time-series and frequency-domain
series of the overall received samples. Extensive numerical results
are presented, validating the interference detection accuracy and
comparing both domains of inputs at the autoencoder.

Index Terms—NGSO, GSO, Spectrum Sharing, Interference
Detection, Deep Learning, Autoencoder

I. INTRODUCTION

An increasingly large number of non-geostationary orbit
(NGSO) satellites have been or are set to be deployed in
space to provide ubiquitous internet access with relatively low
propagation delay. A clear example of such trends are the
mega-constellation satellite networks of SpaceX, OneWeb, and
Amazon [1].

The new wave of Low Earth Orbit (LEO) satellite constel-
lation is expected to operate in Ku-Ka bands, where legacy
geostationary satellite orbit (GSO) systems have been operat-
ing for decades. While national and international regulators
are working hard to establish fair and equitable treatment
for all space actors, there is a growing concern about how
such massive small satellite mesh networks will affect the
operations of GSO systems [2]. Therefore, the coexistence
of these networks in terms of spectrum sharing needs to be
thoroughly examined and analyzed.

Signal interference adversely affects the communication
channel, which leads to degradation of Quality of Service
(QoS), reduced operational efficiency, and eventually revenue
loss [3]. Thus, many researchers in the literature have been
addressing spectrum sharing and the entailed interference man-
agement issues, specifically the interference between GSO-
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NGSO satellites [4], [5], [6], [7]. These papers are based
on conventional interference analysis techniques e.g., Power
Spectral Density (PSD) analysis. However, it can be time-
consuming, costly, and challenging, particularly against un-
known or novel interference types or when there are inter-
fering signals with minor Signal-to-noise ratio (SNR) power
hidden within the noise floor. As a consequence, conventional
methods show weaknesses in practical scenarios. Integrating
Artificial Intelligence (AI) into interference detection can
bring advanced capabilities that can significantly enhance the
effectiveness and efficiency of satellite communication system
monitoring and interference mitigation [8], [9].

Data-driven approaches that employ Deep learning (DL)
algorithms have been considered in [10], where the interfer-
ence classification problem is studied for satellite systems.
In particular, signal classification is performed by directly
processing the IQ samples. While the incumbent signal is a
GSO downlink signal, the interference is assumed to be from
a terrestrial cellular system. The authors in [11] presented
another DL approach to automatically detect short- and long-
term interference in the NGSO signal spectrum received at the
satellite ground station. Therefore, [11] considers the NGSO as
the primary signal and aims at detecting interference/jamming,
which is artificially generated and manually introduced to the
NGSO communication signal.

In an attempt to shed light into a relevant scenario such
that of the NGSO-GSO spectrum coexistence, in this work
we focus on a reference scenario where the legacy system is
the GSO downlink. Such GSO link is eventually interfered
by a NGSO orbit with a low angular separation from their
line-of-sight downlink. In this context, we develop an au-
toencoder deep-learning model for the purpose of detecting
interference from the NGSO satellite’s -specifically a LEO
satellite- downlink paths towards a GSO’s user terminal (UT).
The main idea of this article is to introduce a method for
interference detection (which serves as the initial stride toward
mitigating and suppressing interference) by utilizing a deep-
learning approach based on autoencoders. Real-time trajectory
and positions of co-existing NGSO and GSO satellites are
simulated using their Two-line elements (TLE) information
[12]. The contribution of our work can be summarized in the
next points:

• We simulate a realistic downlink interference scenario
where a GSO UT is receiving a primary signal from



a GSO satellite and it is eventually interfered by a
NGSO downlink (depending on the geometry of the orbit
propagation and pointing angles).

• Accurate satellites’ link budget calculations using actual
system parameters is performed while considering the
GSO’s UT off-axis angle (which affects the receive
antenna gain), and the dynamics depending on the NGSO
satellite movement.

• An autoencoder deep-learning model is proposed to de-
tect the interference in the received signals in both the
time and frequency domains.

• Finally, we provide a comparison of the interference
detection accuracy of the model over time and frequency
domain data and discuss which data representation is
more efficient in detecting the interference.

The remainder of the paper is organized as follows: Section
II describes the system model regarding the link budget
calculation and the digital baseband received signal model.
Section III describes the Scenario simulation, training data
generation, and the DL-based approach. Section IV presents
the experimental results. Finally, Section V concludes the
paper.

II. SYSTEM MODEL

This work analyzes the downlink scenario of forward links
of two co-existing satellite communication systems. A desired
primary GSO satellite system, and a LEO satellite as a
secondary system and source of interference to GSO’s user
terminals (UTs).

A. Link Budget Calculation

GSO Terminal

NGSO 

GSO 

Desired Link

Interfering Link

Fig. 1. Desired and interference links of GSO and NGSO Systems

In this downlink scenario, we are assuming that the GSO
and LEO Satellites are sending their signal while the transmis-
sion main lobe always pointing toward a GSO user terminal
(UT) as illustrated in Fig. 1.

The carrier-to-noise ratio (C/N ) from the GSO satellite at
the UT can be formulated as

C/N =
PtgGtgGrg(θ0)/(4πdg/λg)

2

κTemBnoise
(1)

where Ptg is the transmit power of the desired GSO satellite
antenna, Gtg, and Grg(θ0) denote the gains of the GSO
satellite antenna and UT receiver, respectively, θ0 is the off-
axis angle between the receiver main lobe axes and the GSO
communication link, the term (4πdg/λg)

2 gives the Free space
path loss (FSPL) in the link, in which dg is the slant range
between the GSO satellite and the user, and the wavelength of
the carrier signal λg is related to the light speed c and GSO’s
carrier frequency fg by the relationship λ = c/fg . Tem is
the receiver’s noise temperature, κ represents the Boltzmann
constant, and Bnoise is the noise bandwidth.

The UT is fixed on the ground and maintains a constant
pointing direction towards its corresponding GSO satellite, in
order to achieve maximum gain from the receiving antenna.
Thus, θ0 is set to zero when calculating the desired C/N .
While the LEO satellite is moving in visible positions to
the UT, the user then might also receive the LEO signals
when they are carried in the same frequency band. These
LEO signals would primarily increase the level of interference
in the signal. The downlink interference-to-noise ratio (I/N )
received by the GSO’s UT from the interfering LEO satellite
antenna beam can be calculated as

I/N =
PtlGtlGrl(θl)/(4πdl/λl)

2

κTemBnoise
(2)

where Ptl is the transmit power of the LEO satellite antenna,
Gtl is the gain of the LEO satellite antenna, dl is the slant
range between the interfering satellite and the GSO user
terminal,θl represents the off-axis angle between the receiver
main lobe axes and the LEO communication link, and the
wavelength of the carrier signal λl is related to the light speed
c and LEO’s carrier frequency fl by the relationship λl = c/fl.
The worst-case scenario where the LEO is In-line with the
GSO’s line-of-sight(LOS) path toward the UT, generally, only
happened when (θl = θ0 = 0), but in our analysis, we will
assume that our worst-case is when we had (θl ≈ θ0). This
in-line scenario will result in the I/N being in its peak values
because we will have (Grl ≈ Grg). We also consider the
carrier-to-interference plus noise ratio C/(I+N) or (CINR)
interference evaluation metric to determine the level of inter-
ference caused by the LEO satellite on the GSO system. Most
importantly, the computation of the off-axis angle between
the user and the LEO’s beam direction is following the law of
cosine

θl = arccos

(
d2g + d2l − dgl

2dgdl

)
(3)

dgn is the slant range between the GSO and LEO satellite.
While considering the maximum transmitting gain from GSO
and LEO satellites, the received gain is critical in our scenario.
Due to the LEO satellite movement, the received gain varies
with the satellite movement, it thus is determined according



to the LEO satellite off-axis angle as seen from the UT. For
simplicity, we are applying a general radiation pattern for a
very small-aperture terminal (VSAT) parabolic dish received
gain Gr, and it is related to the first-order Bessel function J1
[13] as

Gr(θ) = Gr(θ0)

[
2λ

πDA

J1 [(πDA/λ)sin(θ)]

sin(θ)

]
(4)

where DA is the diameter of the receiver antenna’s aperture
in meters, λ is the wavelength in meters, θ is the off-axis angle
in degrees from the antenna’s symmetry axis here θ ≡ θl;
Gr(θ0) can be obtained from the first nulls of the radiation
pattern, it represents the maximum gain at beamwidth θ0,
and Gr(θ0) = eA

[
πDA

λ

]2
where eA is the receiver aperture

efficiency.

B. Baseband Received Signal Model

In the downlink of the GSO system Forward link (FWD),
a GSO satellite is transmitting the baseband signal x(t)
(henceforth called the desired signal) to the UT receiver, which
is given as

x(t) =

K−1∑
k=0

x[k]pX(t− kTX), t ∈ [0,KTX ] (5)

where x[k]K−1
k=0 are the modulated symbols depending on the

MODCOD used for DVB-S2X standard, each with average
power PX and duration TX , pX(t) is a rectangular pulse
shaping filter of duration TX and unit energy, TX is related to
the baseband bandwidth of the signal Bx as TX = 1/Bx, and
K is the number of symbols in the desired signal block. The
spectrum ranges [fgmin, fgmax] is assumed to be allocated
for the GSO satellite system, which is divided into some
subbands, each of bandwidth 2Bx, and each subband has a
center frequency. The carrier frequency of the desired signal
fg can assume any of these center frequencies and subbands.
At the same time, the LEO satellite system may transmit the
baseband signal i(t) (henceforth called the interference signal)
of length N that may interfere with x(t) at the GSO’s user
UT , which is given as

i(t) =

V−1∑
ν=0

i[m]pI(t− νTI), t ∈ [0, V TI ] (6)

where i[ν]
V−1
ν=0 are modulated symbols depending on the

MODCOD specified by LEO’s system, each of average power
PI and duration TI , which is related to the baseband band-
width Bi as TI = 1/Bi, pI(t) is a rectangular pulse shaping
filter of duration TI and unit energy. For simplicity, We assume
that V TI = KTX , i.e., both the desired and interference signal
blocks have the same total time duration. Furthermore, we are
assuming Binary Phase shift keying (BPSK) MODCOD for
both x(t) and i(t) signals. The spectrum ranges [flmin, flmax]
is assumed to be allocated for the LEO satellite system,
which is divided into some subbands, each of bandwidth
Bi, each subband has a center frequency. The frequency of

the interfering signal fl is assumed to be sent in the same
GSO’s center carrier frequency for now. At UT, the baseband
received signal can be expressed in the time domain after
down-converting the bandpass received signal by fg as

r(t) = x(t)
√

C/N + αi(t) expj2π(fl−fg)t
√
I/N + ζ(t) (7)

In this equation, C/N and I/N represent the SNR of the
desired signal x(t) and interference signal i(t), respectively.
ζ(t) is complex-valued additive white Gaussian noise (AWGN)
process of zero-mean and unity power over the bandwidth
2Bx. The variable α indicator for interference signal i(t)
appearances 1, when the LEO satellite is not visible to the user
there is no interference (received signals without interference)
α = 0, and when the LEO satellite is visible and actively
sending interference signal to the user(received signals with
interference) α = 1.

III. INTERFERENCE DETECTION MODEL

We selected one GSO satellite from SES fleet, the AS-
TRA19.2 system, and one LEO satellite from SpaceX’s STAR-
LINK constellation. ASTRA 19.2 is a European broadcasting
satellite (ITU Region 1). The Ku band in this region corre-
sponds to 10.7 - 12.7 GHz for direct broadcast satellite services
(DBSS) such as those carried by the ASTRA satellites [14].
On the other hand, STARLINK constellations are deployed
to provide broadband connectivity worldwide, which is part
of the Fixed Satellite Services (FSS). According to SpaceX’s
recent filings with the Federal Communications Commission
(FCC), STARLINK satellites operate in the Ku frequency
bands 10.7–12.7 GHz [15].

A. Scenario Generation

The ASTRA and STARLINK satellite’s real-time position
and trajectory information is based on Kepler’s six orbital el-
ements, which can be easily extracted from the corresponding
satellite’s Two-line elements (TLE) information [12]. From
ASTRA 19.2 system, we chose the “ASTRA 1N”; while from
the STARLINK system, we selected the “STARLINK-2737”
as the LEO satellite. The corresponding orbit propagation
of the selected NGSO satellite has been calculated with
MATLAB toolbox, which provides the estimates of latitude,
longitude, and altitude over time accordingly to the satellite
trajectory. The UT is assumed to be a VSAT dish located
in our research center’s “SnT” building in Luxembourg City,
Luxembourg. To generate the data for our model, we recorded
a sample of the signals every 10 seconds, referred to as a Time-
sample Tn, n = 1, 2, ..., N .

Table I shows the access intervals of both LEO and GEO
satellites to the user terminal. It can be observed that the
ASTRA 19.2 satellite has continuous access to the UT all
the time with a total duration of 24 hours (86400 seconds),
while the STARLINK satellite has discrete access to the UT,

1UT only receives interference power from LEO, the noise power is added
at the front-end receiver



TABLE I
THE ACCESS TABLE OF GSO, NGSO TO THE UT

Source Target IntervalNumber StartTime EndTime Duration (sec)
“ASTRA1N” “SnT” 1 20-Mar-2023 00:00:00 21-Mar-2023 00:00:00 86400

“STARLINK-2737” “SnT” 1 20-Mar-2023 08:54:30 20-Mar-2023 09:01:30 420
“STARLINK-2737” “SnT” 2 20-Mar-2023 10:30:30 20-Mar-2023 10:42:30 720
“STARLINK-2737” “SnT” 3 20-Mar-2023 12:09:30 20-Mar-2023 12:22:10 760
“STARLINK-2737” “SnT” 4 20-Mar-2023 13:49:30 20-Mar-2023 14:02:00 750
“STARLINK-2737” “SnT” 5 20-Mar-2023 15:29:20 20-Mar-2023 15:42:00 760
“STARLINK-2737” “SnT” 6 20-Mar-2023 17:09:10 20-Mar-2023 17:21:00 710
“STARLINK-2737” “SnT” 7 20-Mar-2023 18:50:00 20-Mar-2023 18:57:00 420

TABLE II
LINKS PARAMETERS AND LINKS BUDGET CALCULATED VALUES AS OF

10:35:40 ON 20-MAR-2023

Parameter Value
ASTRA satellite Parameters

Satellite [lat, lon] [-0.0048◦,19.2328◦]
Satellite alt 35764.08 Km
Distance to the user dg 38427.14 km
Transmitted Power Ptg 15 dB
Transmitted Gain Gtg 42.9 dB
Channel bandwidth Bx 250 MHz
Frequency band [fgmin − fgmax] [10.7 - 12.7] GHz
Center of the carrier frequency fg 11.825 GHz
The free-space path loss (FSPL) 205.59 dB

STARLINK satellite Parameters
Satellite [lat, lon]∗ [142.4117◦,9.8403◦]
Satellite alt∗ 554.77 km
Distance to the user dl∗ 1045.50 km
Transmitted Power Ptl 10 dB
Transmitted Gain Gtl 30 dB
Channel bandwidth Bi 250 MHz
Frequency band [flmin − flmax] [10.7 - 12.7] GHz
Center of the carrier frequency fl 11.825 GHz
The free-space path loss (FSPL) 174.29 dB

ASTRA UT Parameters
UT [lat, lon] [49.6257◦,6.1598◦]
UT alt 300 m
Antenna diameter DA 0.9 m
Antenna efficiency eA 0.6
Wavelength λ 0.0254 m
Noise Bandwidth Bnoise 250 MHz
Receiver Noise temperature Tem 250◦ K
Maximum Rx antenna gain 38.73 dB
ASTRA link received antenna gain Grg 38.73 dB
STARLINK link received Off axis angle θl

∗ 4.9854◦
STARLINK link received antenna gain Grl

∗ 26.28 dB
Effective gain-to-noise-temperature ratio (G/T ) 14.74 dB
Received C/N 11.67 dB
Received I/N∗ 12.83 dB
Corresponding CINR∗ -1.38 dB
∗ These values vary with the STARLINK satellite changing positions,
for each other simulation Time-sample (Tn) in the Time-frame (T⃗N )

occurring 7 times during the whole time period, with varying
access duration (420 to 720 seconds).

Fig. 2 illustrates the received signals’ quality scenario by
taking the second STARLINK Interval [20-Mar-2023 10:30:30
to 20-Mar-2023 10:42:30]. As can be seen in the figure, the
worst case is when I/N is the highest, which gives the worst
CINR, in this Interval, this happens when the Simulation

Fig. 2. Illustration of the received signals quality at UT in second STARLINK
Interval

Time-sample Tn ∼= 10:35:40 on 20-Mar-2023. Moreover, the
interference does not exist when the STARLINK satellite has
no visible access to the user, thus I/N does not appear in Fig.
2 and it is only depicted within its access intervals as detailed
in Table I.

For each n-th simulation Time-sample, the C/N
(n),

I/N
(n), and CINR(n) are calculated. A summary of the

overall simulation parameters is described in Table II.

B. Data Generation

The link budget parameters detailed in the previous section
are used to obtain raw data samples in time domain based on
(7), and later transformed to the frequency domain.

In particular, we generate the baseband received signals
using BPSK modulation with 2 GHz sampling frequency fs,
Jx = ceil(fs/Bx) samples per x[K] symbol, and 10 symbols
per x(t) signal, thus the number of samples per signal or
the signal length STime = 80 components represents the
amplitude of the signals and the same values for i(t). Once
the time domain signal in (7) is obtained, the Power Spectrum
Density (PSD) is derived using the Welch method [16]. With a
frequency window size of 1 GHz, eventually, we get SPSD =
81 components representing the PSD’s values in dB, which is
convenient to later compare the performance of the proposed
model for both data representations.



Fig. 3. Examples of different Generated Scenarios of the received ComplexTime signals in absolute and their Power Spectrum Density (PSD) representations
(rx(t) represents the desired GSO signal, ri(t) represents the NGSO interference SIGNAL POWER, and r(t) depicts the actual received signal at the UT receiver).

It is worth noting that the presence of interference in a
particular time instant (i.e. variable α(n)) is determined by the
geometry of the scenario. In other words, α(n) = 0 when the
STARLINK satellite is out of the field of vision of the user
terminal.

As examples, Fig. 3 illustrates different interference scenar-
ios generated based on the proposed NGSO orbit propagation.
These scenarios include (a) the scenario where there is no
interference signal, (b) the scenario where there is a negligible
interference value, but it still exists, (c) the case with a smaller
interference signal value, and (d) the worst-case scenario
where the LEO satellite is on the most interfering position.

We finally obtain the actual received signal vector r⃗
(n)
M

which represents the signal r(n)(t) components or its corre-
sponding PSD values at the n-th simulation Time-sample, n=
1,2,...,N and M ∈ {STime, SPSD}. Thus, we will generate
two matrices, both matrices contain N = 8641 signal samples
(rows), and each sample has M signal component (column).
The matrices will be notated as

• TimeSignals matrix rTime ∈ RN×M , M = STime.
• PSD matrix rPSD ∈ RN×M , M = SPSD.

For training our model, we will require interference-free
data. Therefore, we split the data into a training dataset (only
including interference-free data) and a testing dataset (includ-
ing both interference-free and non-interference-free data). We
make use of the binary indicator α⃗N ∈ {0, 1} from (7) as
splitting label:

• When α(n) = 0, we have a Normal data segment
(Interference-free Signal).

• When α(n) = 1, we have an Anomalous data segment
(Non-interference-free Signal).

The 8641 data contains 8181 interference-free signals and
460 signals effected with interference, with the help of α⃗N ,
we split the total data as follows:

• 80% of the Normal data segments (6536 Inputs) as
Train data set .

• The reminder 20% of the Normal data segments (1645
Inputs) + 100% of the Anomalous data segments(460
Inputs) as Test data set.
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Fig. 4. Illustration of an autoencoder model architecture

C. Proposed DL approach

We propose an unsupervised learning approach based on
the Autoencoders model (AEs) [17] for interference detection.
This Autoencoder model uses “Encoder” layers to encode
or compress the original signal r⃗

(n)
M into a latent-space rep-

resentation and “Decoder” layers to decode or reconstructs
the encoded data (latent space representation) back to the
original dimension and produce r⃗∗

(n)

M . The architecture of the
Autoencoder model is described in Fig.4. The autoencoder
model can be represented by the following equations



a) A normal received signal (No ri) b) An anomalous received signal (minor ri)

c) An anomalous received signal (higher ri) d) An anomalous received signal (a worst-case ri) 

a) A normal received signal (No ri) b) An anomalous received signal (minor ri)

c) An anomalous received signal (higher ri) d) An anomalous received signal (a worst-case ri) 

Fig. 6. Plots of normal and anomalous test examples from the rTime & rPSD input matrices, the reconstruction after it’s encoded and decoded by the
autoencoder, and the reconstruction error

Encoding: z̃(n) = Fenc(r⃗
(n)
M ) (8)

Decoding: r⃗∗
(n)

M = Fdec(z̃
(n)) (9)

where r⃗(n)M represents the input data, z̃n denotes the encoded
representation or latent space, Fenc represents the encoder
function that maps the input r⃗(n)M to the latent space z̃(n). r⃗∗

(n)

M
denotes the reconstructed output, Fdec represents the decoder
function that maps the encoded representation z̃(n) back to the
reconstructed output r⃗∗

(n)

M .
The goal of an autoencoder is to learn an efficient and

meaningful representation of the input data by minimizing the
reconstruction error between the original input (r⃗(n)M ) and the
reconstructed output (r⃗∗

(n)

M ).
The interference problem is treated as an anomaly detection

problem. We are testing using the actual received signal rTime,
rPSD matrices after normalizing each signal r⃗(n)M .

IV. EXPERIMENTAL RESULTS

A. Training the autoencoder model

Tensorflow and Keras frameworks are used to build the
model in Python. The encoder and the decoder are specified
using dense layers, and relu activation functions. We employ
the sigmoid activation function in the output layer of the
autoencoder, which enables us to directly compare the normal-
ized input signal with the output data. The model is compiled
with Mean Average Error (MAE) as the loss function, and
Nesterov Implemented Adam as the optimizer. The weight
and base parameters were updated using the Train data set
(only the 80% of the Normal data segments), while the model
evaluation is done using the full Test data set. The input
for the neural network (NN) is set to be the vector r⃗

(n)
M

representing the normalized time or frequency signal at the

n-th simulation Time-sample with a length of M. The models
converged in 20 epochs for both rTime, rPSD input matrices as
can be seen in Fig.5.
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Fig. 5. Loss per epoch graph for rTime Training Inputs in the left, and rPSD
Training Inputs in the right

Fig.6, shows different results from the model of normal
and anomalous test examples from the rTime & rPSD training
sets, the reconstruction after it is encoded and decoded by the
autoencoder, and the reconstruction error.

B. Autoencoder interference detection performance

By thresholding, the reconstruction error, we can easily
classify the anomalous receive signals r⃗

(n)
M by calculating

whether the reconstruction loss is greater than a fixed decision
threshold β. To set an initial threshold β0, we will calculate
the MAE for the normal segments from the training sets.
Then, we will classify future examples as anomalous if the
reconstruction error is higher than one standard deviation from
the training sets. The initial threshold value is the summation
of the standard deviation and means of the training losses.
Hence,

• β0 for rTime training losses = 0.0004840
• β0 for rPSD training losses = 0.0006148



As shown in Table III, by varying the decision threshold
manually, we can adjust the accuracy, precision, and recall of
the classifier.

TABLE III
ADJUSTING DETECTION PERFORMANCE VARYING THE DECISION

THRESHOLD β VALUES

rTime
β 0.0004840 0.0005251 0.0005569 0.0005615

Accuracy 0.7466743 0.8363215 0.9491035 1.0
Precision 1.0 1.0 1.0 1.0

Recall 0.7337386 0.8279635 0.9465045 1.0
rPSD

β 0.0006148 0.0006257 0.0006333 0.0006495
Accuracy 0.7460960 0.8432620 0.9670329 0.9994216
Precision 0.9991721 0.9992732 0.9993710 0.9993924

Recall 0.7337386 0.8358662 0.9659574 1.0

Lastly, we classify a received signal using the test sets
as an anomaly if the reconstruction error is greater than the
improved decision threshold value. The improved thresholds
affect the detection performance as described in the confusion
matrices shown in Fig.7 and Fig.8
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Fig. 7. Confusion matrix of the classificator for rTime Test Inputs
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Fig. 8. Confusion matrix of the classificator for rPSD Test Inputs

The Autoencoder model was able to reach an accuracy
of 100% on the time domain rTime data with a 0.0005615
threshold value. The same model achieved 99.9% on the
frequency domain rPSD data with a higher threshold value of
0.0006495. These results indicate that the model is able to
detect the presence of different levels of interference signals
in time-domain data representations more efficiently than its
frequency-domain equivalents.

V. CONCLUSION

In this work, we address an emerging interference scenario,
which corresponds to the NGSO-to-GSO downlink interfer-
ence detection. For this, we proposed an autoencoder-based

anomaly detector which has been tested in a realistic simulated
environment. We have compared two different data input rep-
resentations: the time-domain signals, and frequency-domain
signals as power spectrum density PSD values. The proposed
model was able to detect when the received signal r(t) is
affected by interference with good accuracy and less threshold
value in its absolute time domain representations than the
PSD representations. In our future work, we plan to improve
the GSO-NGSO simulation by including more satellites and
generating more interference scenarios. Furthermore, we will
consider the effect of using different modulation schemes, and
also improve the deep learning model.
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