[en] In shaping the Internet of Money, the application of blockchain and distributed ledger technologies (DLTs) to the financial sector triggered regulatory concerns. Notably, while the user anonymity enabled in this field may safeguard privacy and data protection, the lack of identifiability hinders accountability and challenges the fight against money laundering and the financing of terrorism and proliferation (AML/CFT). As law enforcement agencies and the private sector apply forensics to track
crypto transfers across ecosystems that are socio-technical in nature, this paper focuses on the growing relevance of these techniques in a domain where their deployment impacts the traits and evolution of the sphere. In particular, this work offers contextualized insights into the application
of methods of machine learning and transaction graph analysis. Namely, it analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques. The modeling of blockchain transactions as a complex network suggests that the use of graph-based data analysis methods can help classify transactions and identify illicit ones. Indeed, this work shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution. Notably, in this scenario GCN outperform other classic approaches and GAT are applied for the first time to detect anomalies in Bitcoin. Ultimately, the paper upholds the value of public-private synergies to devise forensic strategies conscious of the spirit of explainability and data openness.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
POCHER, Nadia ; Universitat Autònoma de Barcelona ; Alma Mater Studiorum Università di Bologna ; Katholieke Universiteit Leuven - KUL
Zichichi, Mirko
Merizzi, Fabio
Shafiq, Muhammad Zohaib
Ferretti, Stefano
External co-authors :
yes
Language :
English
Title :
Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics
Publication date :
26 July 2023
Journal title :
Electronic Markets
ISSN :
1019-6781
eISSN :
1422-8890
Publisher :
Springer, Heidelberg, Germany
Special issue title :
Financial technology (fintech), The continuing revolution in financial services
Volume :
33
Issue :
37
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 814177 - LAST-JD-RIoE - Law, Science and Technology Joint Doctorate: Rights of the Internet of Everything
Akhgar, B., Gercke, M., Vrochidis, S., & Gibson, H. (2021). Dark Web Investigation. Springer. 10.1007/978-3-030-55343-2 DOI: 10.1007/978-3-030-55343-2
Al Jawaheri, H., Al Sabah, M., Boshmaf, Y., Erbad, A. (2020). Deanonymizing Tor hidden service users through Bitcoin transactions analysis. Computers and Security, 89. https://doi.org/10.1016/j.cose.2019.101684.
Ali, O., Ally, M., Dwivedi, Y., et al. (2020). The state of play of blockchain technology in the financial services sector: A systematic literature review. International Journal of Information Management, 54, 102199. DOI: 10.1016/j.ijinfomgt.2020.102199
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Amarasinghe, N., Boyen, X., & McKague, M. (2019). A survey of anonymity of cryptocurrencies. Acm International Conference Proceeding Series. Sydney: Association for Computing Machinery. 10.1145/3290688.3290693 DOI: 10.1145/3290688.3290693
Amler, H., Eckey, L., Faust, S., Kaiser, M., Schlosser, B. (2023). DeFi-ning DeFi: Challenges and Pathway, 2021–2024. 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS). https://doi.org/10.1109/BRAINS52497.2021.9569795
Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T., & Capkun, S. (2013). Evaluating User Privacy in Bitcoin. LNCS, 7859, 34–51. 10.1007/978-3-642-39884-14 DOI: 10.1007/978-3-642-39884-14
Antonopoulos, A. M. (2017). The internet of money - two. Merkle Boom LLC.
Aramonte, S., Huang, W., Schrimpf, A. (2021). DeFi risks and the decentralisation illusion. BIS Quarterly Review (Dec), 21–36.
Barbereau, T., Smethurst, R., Papageorgiou, O., Sedlmeir, J., & Fridgen, G. (2023). Decentralised finance’s timocratic governance: The distribution and exercise of tokenised voting rights. Technology in Society, 73, 102251. DOI: 10.1016/j.techsoc.2023.102251
Bartoletti, M., Carta, S., Cimoli, T., & Saia, R. (2020). Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact. Future Generation Computer Systems, 102, 259–277. 10.1016/j.future.2019.08.014 DOI: 10.1016/j.future.2019.08.014
Baxter, G., & Sommerville, I. (2011). Socio-technical systems: From design methods to systems engineering. Interacting with Computers, 23(1), 4–17. 10.1016/j.intcom.2010.07.003 DOI: 10.1016/j.intcom.2010.07.003
Berg, A. (2019). The identity, fungibility and anonymity of money. Economic Papers(November), 1–16. https://doi.org/10.1111/1759-3441.12273.
Biryukov, A., & Tikhomirov, S. (2019). Deanonymization and linkability of cryptocurrency transactions based on network analysis. Proceedings - 4th IEEE European Symposium on Security and Privacy, 2019, 172–184. https://doi.org/10.1109/EuroSP.2019.00022
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 10.1023/A:1010933404324 DOI: 10.1023/A:1010933404324
Chainalysis Team (2022). The 2022 Crypto Crime Report.
Chainalysis Team (2023). The 2023 Crypto Crime Report.
Chang, V., Baudier, P., Zhang, H., Xu, Q., Zhang, J., & Arami, M. (2020). How blockchain can impact financial services–The overview, challenges and recommendations from expert interviewees. Technological Forecasting and Social Change, 158, 120166. 10.1016/j.techfore.2020.120166
Chen, W., Zheng, Z., Ngai, E. C., Zheng, P., & Zhou, Y. (2019). Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum. IEEE Access, 7(c), 37575–37586. 10.1109/ACCESS.2019.2905769 DOI: 10.1109/ACCESS.2019.2905769
CipherTrace (2021). Cryptocurrency crime and anti-money laundering report. ciphertrace. https://ciphertrace.com/cryptocurrency-crime-and-anti-money-laundering-report-august-2021/
Defferrard, M., Bresson, X., Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.
Desmond, D. B., Lacey, D., & Salmon, P. (2019). Evaluating cryptocurrency laundering as a complex socio-technical system: A systematic literature review. Journal of Money Laundering Control, 22(3), 480–497. 10.1108/JMLC-10-2018-0063 DOI: 10.1108/JMLC-10-2018-0063
Directive (EU) 2018/843 (2018). Directive (EU) 2018/843 of the European Parliament and of the Council of 30 May 2018 amending Directive (EU) 2015/849 on the prevention of the use of the financial system for the purposes of money laundering or terrorist financing, and amending Directives 2009/138/EC and 2013/36/EU.
Eddin, A.N., Bono, J., Aparício, D., Polido, D., Ascensão, J.T., Bizarro, P., & Ribeiro, P. (2021). Anti-money laundering alert optimization using machine learning with graphs. Arxiv. https://doi.org/10.48550/ARXIV.2112.07508.
Edmunds, J.C. (2020). Rogue money and the underground economy. an encyclopedia of alternative and cryptocurrencies. ABC-CLIO.
European Commission (2021). Anti-money laundering and countering the financing of terrorism legislative package. Retrieved from https://ec.europa.eu/. Accessed Nov 2022
Europol (2020). Internet Organised Crime Threat Assessment 2020. Retrieved from https://www.europol.europa.eu/. Accessed Nov 2022
FATF (2020). Virtual assets red flag indicators of money laundering and terrorist financing. Retrieved from http://www.fatf-gafi.org/. Accessed Nov 2022
FATF (2021). Second 12-month review of the revised fatf standards on virtual assets and virtual asset service providers. Retrieved from https://www.fatf-gafi.org/. Accessed Nov 2022
FATF (2022). International standards on combating money laundering and the financing of terrorism & proliferation: The FATF recommendations. Retrieved from https://www.fatf-gafi.org/. Accessed Nov 2022
Filippi, P. D., & Wright, A. (2018). Blockchain and the law: The rule of code. Harvard University Press. DOI: 10.2307/j.ctv2867sp
Fleder, M., Kester, M.S., & Pillai, S. (2015). Bitcoin transaction graph analysis. Arxiv. https://arxiv.org/abs/1502.01657. Accessed Nov 2022
Goforth, C.R. (2020). Crypto assets: A Fintech forecast. (September), 5–25.
Harrigan, M., & Fretter, C. (2016). The unreasonable effectiveness of address clustering. 2016 IEEE conferences on ubiquitous intelligence & computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people, and smart world congress. IEEE.
Hilbe, J. M. (2009). Logistic regression models. Chapman and hall/CRC. DOI: 10.1201/9781420075779
Ince, P., Liu, J. K., & Zhang, P. (2018). Adding confidential transactions to cryptocurrency IOTA with bulletproofs. Springer. 10.1007/978-3-030-02744-53 DOI: 10.1007/978-3-030-02744-53
Kamišalić, A., Kramberger, R., & Fister, I. (2021). Synergy of blockchain technology and data mining techniques for anomaly detection. Applied Sciences (Switzerland), 11(17), 7987. 10.3390/app11177987 DOI: 10.3390/app11177987
Katona, T. (2021). Decentralized finance: The possibilities of a blockchain “Money Lego” system. Financial and Economic Review, 20(1), 74–102. 10.33893/fer.20.1.74102.
Kipf, T.N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. https://arxiv.org/abs/1609.02907. Accessed Nov 2022
Koshy, P., Koshy, D., & McDaniel, P. (2014). An analysis of anonymity in Bitcoin using P2P network traffic. International financial cryptography association, 8437, 469–485. 10.1007/978-3-662-45472-530 DOI: 10.1007/978-3-662-45472-530
Kute, D.V., Pradhan, B., Shukla, N., & Alamri, A. (2021). Deep learning and explainable artificial intelligence techniques applied for detecting money laundering–a critical review. IEEE Access.
Li, X., Liu, S., Li, Z., Han, X., Shi, C., Hooi, B., Huang, H. & Cheng, X. (2020). Flowscope: Spotting money laundering based on graphs. Proceedings of the AAAI conference on artificial intelligence 34, 4731–4738. 10.1609/aaai.v34i04.5906
Li, Y., Susilo, W., Yang, G., Yu, Y., Du, X., Liu, D., & Guizani, N. (2019). Toward privacy and regulation in blockchain-based cryptocurrencies. IEEE Network, 33(5), 111–117. 10.1109/MNET.2019.1800271 DOI: 10.1109/MNET.2019.1800271
Li, Y., Yang, G., Susilo, W., Yu, Y., Au, M. H., & Liu, D. (2021). Traceable monero: Anonymous cryptocurrency with enhanced accountability. IEEE Transactions on Dependable and Secure Computing, 18(2), 679–691. 10.1109/TDSC.2019.2910058 DOI: 10.1109/TDSC.2019.2910058
Li, Z., Xiang, Z., Gong, W., & Wang, H. (2022). Unified model for collective and point anomaly detection using stacked temporal convolution networks. Applied Intelligence, 52(3), 3118–3131. 10.1007/s10489-021-02559-0 DOI: 10.1007/s10489-021-02559-0
Lischke, M., & Fabian, B. (2016). Analyzing the Bitcoin network: The First Four Years. Future Internet, 8(1). 10.3390/fi8010007.
Liu, L., Liu, J., & Han, J. (2021). Multi-head or single-head? an empirical comparison for transformer training. Arxiv. https://arxiv.org/abs/2106.09650.
Lorenz, J.S. (2021). Machine learning methods to detect money laundering in the Bitcoin blockchain in the presence of label scarcity (Unpublished doctoral dissertation).
Luo, X. (2014). Suspicious transaction detection for anti-money laundering. International Journal of Security and Its Applications, 8(2), 157–166. 10.1016/j.techfore.2020.120166 DOI: 10.1016/j.techfore.2020.120166
Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M., & Savage, S. (2016). A fistful of Bitcoins: Characterizing payments among men with no names. Communications of the ACM, 59(4), 86–93. 10.1145/2896384 DOI: 10.1145/2896384
Moreno-Sanchez, P., Zafar, M., & Kate, A. (2016). Listening to whispers of ripple: Linking wallets and deanonymizing transactions in the ripple network. Proceedings on Privacy Enhancing Technologies, 2016, 436–453. 10.1515/popets-2016-0049 DOI: 10.1515/popets-2016-0049
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. www.bitcoin.org/bitcoin.pdf. Accessed Nov 2020
Neudecker, T., & Hartenstein, H. (2017). Could network information facilitate address clustering in Bitcoin? LNCS, 10323, 155–169. 10.1007/978-3-319-70278-09 DOI: 10.1007/978-3-319-70278-09
Oad, A., Razaque, A., Tolemyssov, A., Alotaibi, M., Alotaibi, B., & Zhao, C. (2021). Blockchain-enabled transaction scanning method for money laundering detection. Electronics, 10(15), 1766. 10.3390/electronics10151766 DOI: 10.3390/electronics10151766
Ober, M., Katzenbeisser, S., & Hamacher, K. (2013). Structure and anonymity of the Bitcoin transaction graph. Future Internet, 5(2), 237–250. 10.3390/fi5020237 DOI: 10.3390/fi5020237
Oliveira, C., Torres, J., Silva, M.I., Aparício, D., Ascensão, J.T., & Bizarro, P. (2021). Guiltywalker: Distance to illicit nodes in the Bitcoin network. Arxiv. https://arxiv.org/abs/2102.05373. Accessed Nov 2022
Pfitzmann, A., & Hansen, M. (2010). A terminology for talking about privacy by data minimization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Management. Technical University Dresden, 1–98. 10.1.1.154.635
Phan, T. (2021). Exploring Blockchain Forensics.
Philipp, G., Song, D., & Carbonell, J.G. (2017). The exploding gradient problem demystified - Definition, prevalence, impact, origin, tradeoffs, and solutions. Arxiv. https://arxiv.org/abs/1712.05577.
Pocher, N. & Zichichi, M. (2022) Towards CBDC-based machine-to-machine payments in consumer IoT. Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22).
Quiniou, M. (2019). Blockchain: The advent of disintermediation. ISTE Ltd. DOI: 10.1002/9781119629573
Reid, F., & Harrigan, M. (2013). An analysis of anonymity in the Bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds) Security and Privacy in Social Networks, 197–223. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4139-7
Shayegan, M. J., Sabor, H. R., Uddin, M., & Chen, C.-L. (2022). A collective anomaly detection technique to detect crypto wallet frauds on Bitcoin network. Symmetry, 14(2), 328. 10.3390/sym14020328 DOI: 10.3390/sym14020328
Sun, X., Zhang, J., Zhao, Q., Liu, S., Chen, J., Zhuang, R., Shen, H., & Cheng, X. (2021). Cubeflow: Money laundering detection with coupled tensors. Pacific-Asia conference on knowledge discovery and data mining.
Tapscott, D., & Euchner, J. (2019). Blockchain and the internet of value: An interview with Don Tapscott. Research Technology Management, 62(1), 12–19. 10.1080/08956308.2019.1541711 DOI: 10.1080/08956308.2019.1541711
Tennant, L. (2017). Improving the anonymity of the IOTA cryptocurrency, 1–20. Retrieved from https://laurencetennant.com/. Accessed Nov 2022
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2017). Graph attention networks. Arxiv. https://arxiv.org/abs/1710.10903. Accessed Nov 2022
Wang, F., & De Filippi, P. (2020). Self-sovereign identity in a globalized world: Credentials-based identity systems as a driver for economic inclusion. Frontiers in Blockchain, 2(January), 1–22. 10.3389/fbloc.2019.00028 DOI: 10.3389/fbloc.2019.00028
Weber, M., Chen, J., Suzumura, T., Pareja, A., Ma, T., Kanezashi, H., Kaler, T., Leiserson, C. E., & Schardl, T. B. (2018). Scalable graph learning for anti-money laundering: A first look. (1970). Arxiv. https://arxiv.org/abs/1812.00076. Accessed Nov 2022
Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T., & Leiserson, C.E. (2019). Anti-money laundering in Bitcoin: Experimenting with graph convolutional networks for financial forensics. Arxiv(10).https://arxiv.org/abs/1908.02591. Accessed Nov 2022
Wu, J., Liu, J., Chen, W., Huang, H., Zheng, Z., & Zhang, Y. (2020). Detecting mixing services via mining Bitcoin transaction network with hybrid motifs. Arxiv. https://arxiv.org/abs/2001.05233. Accessed Nov 2022
Wu, Y., Tao, F., Liu, L., Gu, J., Panneerselvam, J., Zhu, R., & Shahzad, M. N. (2021). A Bitcoin transaction network analytic method for future blockchain forensic investigation. IEEE Transactions on Network Science and Engineering, 8(2), 1230–1241. 10.1109/TNSE.2020.2970113 DOI: 10.1109/TNSE.2020.2970113
Xu, J. J. (2016). Are blockchains immune to all malicious attacks? Financial Innovation, 2(1), 25. 10.1186/s40854-016-0046-5 DOI: 10.1186/s40854-016-0046-5
Yin, H. H. S., Langenheldt, K., Harlev, M., Mukkamala, R. R., & Vatrapu, R. (2019). Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing the Bitcoin blockchain. Journal of Management Information Systems, 36(1), 37–73. 10.1080/07421222.2018.1550550 DOI: 10.1080/07421222.2018.1550550
You, J., Ying, R., & Leskovec, J. (2020). Design space for graph neural networks. Arxiv. https://arxiv.org/abs/2011.08843. Accessed Nov 2022