[en] RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
STEFFEN, Candy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
KAYA, Pelin ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
SCHAFFNER-RECKINGER, Elisabeth ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
ABANKWA, Daniel ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Eliminating oncogenic RAS: back to the future at the drawing board.
Date de publication/diffusion :
2023
Titre du périodique :
Biochemical Society Transactions
ISSN :
0300-5127
eISSN :
1470-8752
Maison d'édition :
Portland Press, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR14061736 - Development Of Protein-protein Interaction Inhibitors To Selectively Target H-ras In Cancer, 2020 (01/10/2020-30/09/2024) - Daniel Abankwa
Simanshu, D.K., Nissley, D.V. and McCormick, F. (2017) RAS proteins and their regulators in human disease. Cell 170, 17–33 https://doi.org/10.1016/j.cell.2017.06.009
Prior, I.A., Hood, F.E. and Hartley, J.L. (2020) The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 https://doi.org/10.1158/0008-5472.CAN-19-3682
Skoulidis, F., Li, B.T., Dy, G.K., Price, T.J., Falchook, G.S., Wolf, J. et al. (2021) Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 https://doi.org/10.1056/NEJMoa2103695
Fell, J.B., Fischer, J.P., Baer, B.R., Blake, J.F., Bouhana, K., Briere, D.M. et al. (2020) Identification of the clinical development candidate MRTX849, a covalent KRAS(G12C) inhibitor for the treatment of cancer. J. Med. Chem. 63, 6679–6693 https://doi.org/10.1021/acs.jmedchem.9b02052
Punekar, S.R., Velcheti, V., Neel, B.G. and Wong, K.K. (2022) The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 https://doi.org/10.1038/s41571-022-00671-9
Awad, M.M., Liu, S., Rybkin, I.I., Arbour, K.C., Dilly, J., Zhu, V.W. et al. (2021) Acquired resistance to KRAS(G12C) inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 https://doi.org/10.1056/NEJMoa2105281
Zhao, Y., Murciano-Goroff, Y.R., Xue, J.Y., Ang, A., Lucas, J., Mai, T.T. et al. (2021) Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 599, 679–683 https://doi.org/10.1038/s41586-021-04065-2
Kwan, A.K., Piazza, G.A., Keeton, A.B. and Leite, C.A. (2022) The path to the clinic: a comprehensive review on direct KRAS(G12C) inhibitors. J. Exp. Clin. Cancer Res. 41, 27 https://doi.org/10.1186/s13046-021-02225-w
Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 https://doi.org/10.1038/nature12796
Moore, A.R., Rosenberg, S.C., McCormick, F. and Malek, S. (2020) RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 https://doi.org/10.1038/s41573-020-0068-6
Janes, M.R., Zhang, J., Li, L.S., Hansen, R., Peters, U., Guo, X. et al. (2018) Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e517 https://doi.org/10.1016/j.cell.2018.01.006
Vasta, J.D., Peacock, D.M., Zheng, Q., Walker, J.A., Zhang, Z., Zimprich, C.A. et al. (2022) KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat. Chem. Biol. 18, 596–604 https://doi.org/10.1038/s41589-022-00985-w
Zhang, Z., Guiley, K.Z. and Shokat, K.M. (2022) Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). Nat. Chem. Biol. 18, 1177–1183 https://doi.org/10.1038/s41589-022-01065-9
Zhang, Z., Morstein, J., Ecker, A.K., Guiley, K.Z. and Shokat, K.M. (2022) Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile. J. Am. Chem. Soc. 144, 15916–15921 https://doi.org/10.1021/jacs.2c05377
Li, C., Vides, A., Kim, D., Xue, J.Y., Zhao, Y. and Lito, P. (2021) The G protein signaling regulator RGS3 enhances the GTPase activity of KRAS. Science 374, 197–201 https://doi.org/10.1126/science.abf1730
Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. et al. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 https://doi.org/10.1126/science.277.5324.333
Soundararajan, M., Willard, F.S., Kimple, A.J., Turnbull, A.P., Ball, L.J., Schoch, G.A. et al. (2008) Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc. Natl Acad. Sci. U.S.A. 105, 6457–6462 https://doi.org/10.1073/pnas.0801508105
Tesmer, J.J., Berman, D.M., Gilman, A.G. and Sprang, S.R. (1997) Structure of RGS4 bound to AlF4--activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 https://doi.org/10.1016/s0092-8674(00)80204-4
Tanaka, N., Lin, J.J., Li, C., Ryan, M.B., Zhang, J., Kiedrowski, L.A. et al. (2021) Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 https://doi.org/10.1158/2159-8290.CD-21-0365
Lito, P., Solomon, M., Li, L.S., Hansen, R. and Rosen, N. (2016) Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 https://doi.org/10.1126/science.aad6204
Hallin, J., Bowcut, V., Calinisan, A., Briere, D.M., Hargis, L., Engstrom, L.D. et al. (2022) Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28, 2171–2182 https://doi.org/10.1038/s41591-022-02007-7
Zhang, Z. and Shokat, K.M. (2019) Bifunctional small-molecule ligands of K-Ras induce its association with immunophilin proteins. Angew. Chem. Int. Ed. Engl. 58, 16314–16319 https://doi.org/10.1002/anie.201910124
Geiger, T.M., Schäfer, S.C., Dreizler, J.K., Walz, M. and Hausch, F. (2022) Clues to molecular glues. Curr. Res. Chem. Biol. 2, 14 https://doi.org/10.1016/j.crchbi.2021.100018
Koide, A., Bailey, C.W., Huang, X. and Koide, S. (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 https://doi.org/10.1006/jmbi.1998.2238
Stumpp, M.T., Binz, H.K. and Amstutz, P. (2008) DARPins: a new generation of protein therapeutics. Drug Discov. Today 13, 695–701 https://doi.org/10.1016/j.drudis.2008.04.013
Tiede, C., Tang, A.A., Deacon, S.E., Mandal, U., Nettleship, J.E., Owen, R.L. et al. (2014) Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng. Des. Sel. 27, 145–155 https://doi.org/10.1093/protein/gzu007
Guillard, S., Kolasinska-Zwierz, P., Debreczeni, J., Breed, J., Zhang, J., Bery, N. et al. (2017) Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nat. Commun. 8, 16111 https://doi.org/10.1038/ncomms16111
Shin, S.M., Choi, D.K., Jung, K., Bae, J., Kim, J.S., Park, S.W. et al. (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat. Commun. 8, 15090 https://doi.org/10.1038/ncomms15090
Tanaka, T., Williams, R.L. and Rabbitts, T.H. (2007) Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. EMBO J. 26, 3250–3259 https://doi.org/10.1038/sj.emboj.7601744
Teng, K.W., Tsai, S.T., Hattori, T., Fedele, C., Koide, A., Yang, C. et al. (2021) Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat. Commun. 12, 2656 https://doi.org/10.1038/s41467-021-22969-5
Wallon, L., Khan, I., Teng, K.W., Koide, A., Zuberi, M., Li, J. et al. (2022) Inhibition of RAS-driven signaling and tumorigenesis with a pan-RAS monobody targeting the switch I/II pocket. Proc. Natl Acad. Sci. U.S.A. 119, e2204481119 https://doi.org/10.1073/pnas.2204481119
Haza, K.Z., Martin, H.L., Rao, A., Turner, A.L., Saunders, S.E., Petersen, B. et al. (2021) RAS-inhibiting biologics identify and probe druggable pockets including an SII-α3 allosteric site. Nat. Commun. 12, 4045 https://doi.org/10.1038/s41467-021-24316-0
Kessler, D., Gmachl, M., Mantoulidis, A., Martin, L.J., Zoephel, A., Mayer, M. et al. (2019) Drugging an undruggable pocket on KRAS. Proc. Natl Acad. Sci. U.S.A. 116, 15823–15829 https://doi.org/10.1073/pnas.1904529116
Maurer, T., Garrenton, L.S., Oh, A., Pitts, K., Anderson, D.J., Skelton, N.J. et al. (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl Acad. Sci. U.S.A. 109, 5299–5304 https://doi.org/10.1073/pnas.1116510109
Abankwa, D. and Gorfe, A.A. (2020) Mechanisms of Ras membrane organization and signaling: Ras rocks again. Biomolecules 10, 1522 https://doi.org/10.3390/biom10111522
Abankwa, D., Gorfe, A.A., Inder, K. and Hancock, J.F. (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc. Natl Acad. Sci. U.S.A. 107, 1130–1135 https://doi.org/10.1073/pnas.0903907107
Abankwa, D., Hanzal-Bayer, M., Ariotti, N., Plowman, S.J., Gorfe, A.A., Parton, R.G. et al. (2008) A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27, 727–735 https://doi.org/10.1038/emboj.2008.10
Solman, M., Ligabue, A., Blazevits, O., Jaiswal, A., Zhou, Y., Liang, H. et al. (2015) Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. Elife 4, e08905 https://doi.org/10.7554/eLife.08905
Spencer-Smith, R., Koide, A., Zhou, Y., Eguchi, R.R., Sha, F., Gajwani, P. et al. (2017) Inhibition of RAS function through targeting an allosteric regulatory site. Nat. Chem. Biol. 13, 62–68 https://doi.org/10.1038/nchembio.2231
Van, Q.N., Prakash, P., Shrestha, R., Balius, T.E., Turbyville, T.J. and Stephen, A.G. (2021) RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention. Biomolecules 11, 377 https://doi.org/10.3390/biom11030377
Bery, N., Miller, A. and Rabbitts, T. (2020) A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat. Commun. 11, 3233 https://doi.org/10.1038/s41467-020-17022-w
Roth, S., Macartney, T.J., Konopacka, A., Chan, K.H., Zhou, H., Queisser, M.A. et al. (2020) Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system. Cell Chem. Biol. 27, 1151–1163.e1156 https://doi.org/10.1016/j.chembiol.2020.06.012
Lim, S., Khoo, R., Juang, Y.C., Gopal, P., Zhang, H., Yeo, C. et al. (2021) Exquisitely specific anti-KRAS biodegraders inform on the cellular prevalence of nucleotide-loaded states. ACS Cent. Sci. 7, 274–291 https://doi.org/10.1021/acscentsci.0c01337
Choi, J.S. and Joo, S.H. (2020) Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 28, 18–24 https://doi.org/10.4062/biomolther.2019.082
Gorfe, A.A. and Cho, K.J. (2021) Approaches to inhibiting oncogenic K-Ras. Small GTPases 12, 96–105 https://doi.org/10.1080/21541248.2019. 1655883
Grant, B.J., Lukman, S., Hocker, H.J., Sayyah, J., Brown, J.H., McCammon, J.A. et al. (2011) Novel allosteric sites on Ras for lead generation. PLoS ONE 6, e25711 https://doi.org/10.1371/journal.pone.0025711
Prakash, P., Hancock, J.F. and Gorfe, A.A. (2015) Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 83, 898–909 https://doi.org/10.1002/prot.24786
McCarthy, M.J., Pagba, C.V., Prakash, P., Naji, A.K., van der Hoeven, D., Liang, H. et al. (2019) Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega 4, 2921–2930 https://doi.org/10.1021/acsomega.8b03308
Feng, H., Zhang, Y., Bos, P.H., Chambers, J.M., Dupont, M.M. and Stockwell, B.R. (2019) K-Ras(G12D) Has a potential allosteric small molecule binding site. Biochemistry 58, 2542–2554 https://doi.org/10.1021/acs.biochem.8b01300
Rosnizeck, I.C., Graf, T., Spoerner, M., Trankle, J., Filchtinski, D., Herrmann, C. et al. (2010) Stabilizing a weak binding state for effectors in the human ras protein by cyclen complexes. Angew. Chem. Int. Ed. Engl. 49, 3830–3833 https://doi.org/10.1002/anie.200907002
Hocker, H.J., Cho, K.J., Chen, C.Y., Rambahal, N., Sagineedu, S.R., Shaari, K. et al. (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc. Natl Acad. Sci. U.S.A. 110, 10201–10206 https://doi.org/10.1073/pnas.1300016110
Mazhab-Jafari, M.T., Marshall, C.B., Smith, M.J., Gasmi-Seabrook, G.M., Stathopulos, P.B., Inagaki, F. et al. (2015) Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc. Natl Acad. Sci. U.S.A. 112, 6625–6630 https://doi.org/10.1073/pnas.1419895112
Fang, Z., Marshall, C.B., Nishikawa, T., Gossert, A.D., Jansen, J.M., Jahnke, W. et al. (2018) Inhibition of K-RAS4B by a unique mechanism of action: stabilizing membrane-dependent occlusion of the effector-binding site. Cell Chem. Biol. 25, 1327–1336.e1324 https://doi.org/10.1016/j.chembiol.2018.07.009
Tran, T.H., Alexander, P., Dharmaiah, S., Agamasu, C., Nissley, D.V., McCormick, F. et al. (2020) The small molecule BI-2852 induces a nonfunctional dimer of KRAS. Proc. Natl Acad. Sci. U.S.A. 117, 3363–3364 https://doi.org/10.1073/pnas.1918164117
Bekes, M., Langley, D.R. and Crews, C.M. (2022) PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 https://doi.org/10.1038/s41573-021-00371-6
Paiva, S.L. and Crews, C.M. (2019) Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol. 50, 111–119 https://doi.org/10.1016/j.cbpa.2019.02.022
Bond, M.J., Chu, L., Nalawansha, D.A., Li, K. and Crews, C.M. (2020) Targeted degradation of oncogenic KRAS(G12C) by VHL-Recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 https://doi.org/10.1021/acscentsci.0c00411
Li, L., Wu, Y., Yang, Z., Xu, C., Zhao, H., Liu, J. et al. (2021) Discovery of KRas G12C-IN-3 and pomalidomide-based PROTACs as degraders of endogenous KRAS G12C with potent anticancer activity. Bioorg. Chem. 117, 105447 https://doi.org/10.1016/j.bioorg.2021.105447
Zeng, M., Xiong, Y., Safaee, N., Nowak, R.P., Donovan, K.A., Yuan, C.J. et al. (2020) Exploring targeted degradation strategy for oncogenic KRAS (G12C). Cell Chem. Biol. 27, 19–31.e16 https://doi.org/10.1016/j.chembiol.2019.12.006
Yang, F., Wen, Y., Wang, C., Zhou, Y., Zhou, Y., Zhang, Z.M. et al. (2022) Efficient targeted oncogenic KRAS(G12C) degradation via first reversible-covalent PROTAC. Eur. J. Med. Chem. 230, 114088 https://doi.org/10.1016/j.ejmech.2021.114088
Kannt, A. and Dikic, I. (2021) Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 28, 1014–1031 https://doi.org/10.1016/j.chembiol.2021.04.007
Schapira, M., Calabrese, M.F., Bullock, A.N. and Crews, C.M. (2019) Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 https://doi.org/10.1038/s41573-019-0047-y
Bery, N., Cruz-Migoni, A., Bataille, C.J., Quevedo, C.E., Tulmin, H., Miller, A. et al. (2018) BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. Elife 7, e37122 https://doi.org/10.7554/eLife.37122
Kessler, D., Bergner, A., Bottcher, J., Fischer, G., Dobel, S., Hinkel, M. et al. (2020) Drugging all RAS isoforms with one pocket. Future Med. Chem. 12, 1911–1923 https://doi.org/10.4155/fmc-2020-0221
Matsumoto, S., Hiraga, T., Hayashi, Y., Yoshikawa, Y., Tsuda, C., Araki, M. et al. (2018) Molecular basis for allosteric inhibition of GTP-bound H-Ras protein by a small-molecule compound carrying a naphthalene ring. Biochemistry 57, 5350–5358 https://doi.org/10.1021/acs.biochem.8b00680
Quevedo, C.E., Cruz-Migoni, A., Bery, N., Miller, A., Tanaka, T., Petch, D. et al. (2018) Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment. Nat. Commun. 9, 3169 https://doi.org/10.1038/s41467-018-05707-2
Shima, F., Yoshikawa, Y., Ye, M., Araki, M., Matsumoto, S., Liao, J. et al. (2013) In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc. Natl Acad. Sci. U.S.A. 110, 8182–8187 https://doi.org/10.1073/pnas.1217730110
Sun, Q., Burke, J.P., Phan, J., Burns, M.C., Olejniczak, E.T., Waterson, A.G. et al. (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl. 51, 6140–6143 https://doi.org/10.1002/anie.201201358
Wiechmann, S., Maisonneuve, P., Grebbin, B.M., Hoffmeister, M., Kaulich, M., Clevers, H. et al. (2020) Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids. J. Biol. Chem. 295, 4526–4540 https://doi.org/10.1074/jbc.RA119. 011025
Leshchiner, E.S., Parkhitko, A., Bird, G.H., Luccarelli, J., Bellairs, J.A., Escudero, S. et al. (2015) Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl Acad. Sci. U.S.A. 112, 1761–1766 https://doi.org/10.1073/pnas.1413185112
McGee, J.H., Shim, S.Y., Lee, S.J., Swanson, P.K., Jiang, S.Y., Durney, M.A. et al. (2018) Exceptionally high-affinity Ras binders that remodel its effector domain. J. Biol. Chem. 293, 3265–3280 https://doi.org/10.1074/jbc.M117.816348
Kauke, M.J., Traxlmayr, M.W., Parker, J.A., Kiefer, J.D., Knihtila, R., McGee, J. et al. (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci. Rep. 7, 5831 https://doi.org/10.1038/s41598-017-05889-7
Upadhyaya, P., Qian, Z., Selner, N.G., Clippinger, S.R., Wu, Z., Briesewitz, R. et al. (2015) Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Angew. Chem. Int. Ed. Engl. 54, 7602–7606 https://doi.org/10.1002/anie.201502763
Buyanova, M., Cai, S., Cooper, J., Rhodes, C., Salim, H., Sahni, A. et al. (2021) Discovery of a bicyclic peptidyl pan-Ras inhibitor. J. Med. Chem. 64, 13038–13053 https://doi.org/10.1021/acs.jmedchem.1c01130
Niida, A., Sasaki, S., Yonemori, K., Sameshima, T., Yaguchi, M., Asami, T. et al. (2017) Investigation of the structural requirements of K-Ras(G12D) selective inhibitory peptide KRpep-2d using alanine scans and cysteine bridging. Bioorg. Med. Chem. Lett. 27, 2757–2761 https://doi.org/10.1016/j.bmcl.2017.04.063
Sakamoto, K., Kamada, Y., Sameshima, T., Yaguchi, M., Niida, A., Sasaki, S. et al. (2017) K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem. Biophys. Res. Commun. 484, 605–611 https://doi.org/10.1016/j.bbrc.2017.01.147
Sogabe, S., Kamada, Y., Miwa, M., Niida, A., Sameshima, T., Kamaura, M. et al. (2017) Crystal structure of a human K-Ras G12D mutant in complex with GDP and the cyclic inhibitory peptide KRpep-2d. ACS Med. Chem. Lett. 8, 732–736 https://doi.org/10.1021/acsmedchemlett.7b00128
Sakamoto, K., Lin, B., Nunomura, K., Izawa, T. and Nakagawa, S. (2022) The K-Ras(G12D)-inhibitory peptide KS-58 suppresses growth of murine CT26 colorectal cancer cell-derived tumors. Sci. Rep. 12, 8121 https://doi.org/10.1038/s41598-022-12401-3
Sakamoto, K., Masutani, T. and Hirokawa, T. (2020) Generation of KS-58 as the first K-Ras(G12D)-inhibitory peptide presenting anti-cancer activity in vivo. Sci. Rep. 10, 21671 https://doi.org/10.1038/s41598-020-78712-5
Zhang, Z., Gao, R., Hu, Q., Peacock, H., Peacock, D.M., Dai, S. et al. (2020) GTP-state-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent. Sci. 6, 1753–1761 https://doi.org/10.1021/acscentsci.0c00514