Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Novel deep learning approaches for learning scientific simulations
DESHPANDE, Saurabh; SOSA, Raul Ian; BORDAS, Stéphane et al.
2023The 14th International Conference of Computational Methods (ICCM2023)
Peer reviewed
 

Files


Full Text
Abstract_ICCM.pdf
Author postprint (48.1 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Non-linear FEM; Deep learning; Surrogate modeling
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
DESHPANDE, Saurabh  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
SOSA, Raul Ian ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
LENGIEWICZ, Jakub ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
Novel deep learning approaches for learning scientific simulations
Publication date :
August 2023
Event name :
The 14th International Conference of Computational Methods (ICCM2023)
Event place :
Ho Chi Minh, Vietnam
Event date :
06-08-2023 to 10-08-2023
Audience :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
European Projects :
H2020 - 764644 - RAINBOW - Rapid Biomechanics Simulation for Personalized Clinical Design
Name of the research project :
R-AGR-3325 - H2020-MSCA-ITN-2017-764644-RAINBOW (01/04/2018 - 31/03/2023) - BORDAS Stéphane
Funders :
CE - Commission Européenne [BE]
Union Européenne [BE]
Available on ORBilu :
since 02 July 2023

Statistics


Number of views
103 (11 by Unilu)
Number of downloads
53 (2 by Unilu)

Bibliography


Similar publications



Contact ORBilu