[en] In this work we develop new finite element discretisations of the shear-deformable Reissner--Mindlin plate problem based on the Hellinger-Reissner principle of symmetric stresses. Specifically, we use conforming Hu-Zhang elements to discretise the bending moments in the space of symmetric square integrable fields with a square integrable divergence. The latter results in highly accurate approximations of the bending moments M and in the rotation field being in the discontinuous Lebesgue space , such that the Kirchhoff-Love constraint can be satisfied for t tending to zero. In order to preserve optimal convergence rates across all variables for the case t tending to zero, we present an extension of the formulation using Raviart-Thomas elements for the shear stress.
We prove existence and uniqueness in the continuous setting and rely on exact complexes for inheritance of well-posedness in the discrete setting.
This work introduces an efficient construction of the Hu-Zhang base functions on the reference element via the polytopal template methodology and Legendre polynomials, making it applicable to hp-FEM. The base functions on the reference element are then mapped to the physical element using novel polytopal transformations, which are suitable also for curved geometries.
The robustness of the formulations and the construction of the Hu-Zhang element are tested for shear-locking, curved geometries and an L-shaped domain with a singularity in the bending moments. Further, we compare the performance of the novel formulations with the primal-, MITC- and recently introduced TDNNS methods.
Disciplines :
Mathématiques Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SKY, Adam ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Neunteufel, Michael
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ZILIAN, Andreas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Reissner-Mindlin plate formulation using symmetric Hu-Zhang elements via polytopal transformations
Date de publication/diffusion :
01 novembre 2023
Titre du périodique :
Computer Methods in Applied Mechanics and Engineering
Bathe, K.-J., Brezzi, F., Cho, S.W., The MITC7 and MITC9 Plate bending elements. Comput. Struct. 32:3–4 (1989), 797–814.
Hale, J.S., Brunetti, M., Bordas, S.P., Maurini, C., Simple and extensible plate and shell finite element models through automatic code generation tools. Comput. Struct. 209 (2018), 163–181.
Chinosi, C., Lovadina, C., Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates. Comput. Mech. 16 (1995), 36–44.
Falk, R.S., Tu, T., Locking-Free Finite Elements for the Reissner-Mindlin Plate. Math. Comp. 69:231 (2000), 911–928 Publisher: American Mathematical Society.
Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S., A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. 46:5 (2010), 679–701.
Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J., A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Engrg. 197:13 (2008), 1184–1203.
Falk, R.S., Finite Elements for the Reissner–Mindlin Plate. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M., Gastaldi, L., (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications: Lectures Given at the C.I.M.E. Summer School Held in Cetraro, Italy June 26–July 1, 2006 Lecture Notes in Mathematics, 2008, Springer, Berlin, Heidelberg, 195–232.
Nédélec, J.C., A new family of mixed finite elements in R3. Numer. Math. 50:1 (1986), 57–81.
Nédélec, J.C., Mixed finite elements in R3. Numer. Math. 35:3 (1980), 315–341.
Beirão Da Veiga, L., Mora, D., Rodríguez, R., Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model. Numer. Methods Partial Differential Equations 29:1 (2013), 40–63.
Guo, Y., Yu, G., Xie, X., Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates. Sci. China Math. 56:8 (2013), 1727–1742.
Pechstein, A.S., Schöberl, J., The TDNNS method for Reissner–Mindlin plates. Numer. Math. 137:3 (2017), 713–740.
Lederer, P., Stenberg, R., Energy norm analysis of exactly symmetric mixed finite elements for linear elasticity. Math. Comp., 92, 2022.
Arnold, D.N., Winther, R., Mixed finite elements for elasticity. Numer. Math. 92:3 (2002), 401–419.
Arnold, D.N., Awanou, G., Winther, R., Finite elements for symmetric tensors in three dimensions. Math. Comp. 77:263 (2008), 1229–1251.
Hu, J., Zhang, S., A family of conforming mixed finite elements for linear elasticity on triangular grids. 2014 arXiv, URL https://arxiv.org/abs/1406.7457.
Hu, J., Zhang, S., A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58:2 (2015), 297–307.
Hu, J., Zhang, S., Finite element approximations of symmetric tensors on simplicial grids in Rn: The lower order case. Math. Models Methods Appl. Sci. 26:09 (2016), 1649–1669.
Aznaran, F., Kirby, R., Farrell, P., Transformations for Piola-mapped elements. 2021 arXiv, URL https://arxiv.org/abs/2110.13224.
Kirby, R.C., A general approach to transforming finite elements. SMAI J. Comput. Math. 4 (2018), 197–224.
Kirby, R.C., Mitchell, L., Code Generation for Generally Mapped Finite Elements. ACM Trans. Math. Software 45:4 (2019), 41:1–41:23.
Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J., Firedrake: Automating the Finite Element Method by Composing Abstractions. ACM Trans. Math. Softw. 43:3 (2016), 24:1–24:27.
Arnold, D.N., Brezzi, F., Douglas, J., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1:2 (1984), 347–367.
Arnold, D.N., Falk, R.S., Winther, R., Mixed Finite Element Methods for Linear Elasticity with Weakly Imposed Symmetry. Math. Comp. 76:260 (2007), 1699–1723 Publisher: American Mathematical Society.
Pechstein, A., Schöberl, J., Anisotropic mixed finite elements for elasticity. Internat. J. Numer. Methods Engrg. 90:2 (2012), 196–217.
Pechstein, A.S., Schöberl, J., An analysis of the TDNNS method using natural norms. Numer. Math. 139:1 (2018), 93–120.
Pauly, D., Schomburg, M., Hilbert complexes with mixed boundary conditions—Part 2: Elasticity complex. Math. Methods Appl. Sci. 45:16 (2022), 8971–9005.
Arnold, D.N., Hu, K., Complexes from Complexes. Found. Comput. Math. 21:6 (2021), 1739–1774.
Neunteufel, M., Schöberl, J., The Hellan–Herrmann–Johnson method for nonlinear shells. Comput. Struct., 225, 2019, 106109.
Arnold, D.N., Walker, S.W., The Hellan–Herrmann–Johnson Method with Curved Elements. SIAM J. Numer. Anal. 58:5 (2020), 2829–2855.
Voss, J., Baaser, H., Martin, R.J., Neff, P., More on anti-plane shear. J. Optim. Theory Appl. 184:1 (2020), 226–249.
Pauly, D., Schomburg, M., Hilbert complexes with mixed boundary conditions Part 1: de Rham complex. Math. Methods Appl. Sci. 45:5 (2022), 2465–2507.
Braess, D., Finite Elemente - Theorie, Schnelle Löser und Anwendungen in der ElastizitäTstheorie. fifth ed., 2013, Springer-Verlag, Berlin.
Bathe, K., Luiz Bucalem, M., Brezzi, F., Displacement and stress convergence of our MITC plate bending elements. Eng. Comput. 7:4 (1990), 291–302.
Sky, A., Muench, I., Polytopal templates for the formulation of semi-continuous vectorial finite elements of arbitrary order. 2022 arXiv, URL https://arxiv.org/abs/2210.03525.
Sky, A., Muench, I., Rizzi, G., Neff, P., Higher order Bernstein-Bézier and Nédélec finite elements for the relaxed micromorphic model. 2023 arXiv, URL https://arxiv.org/abs/2301.01491.
Vos, P.E., Sherwin, S.J., Kirby, R.M., From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229:13 (2010), 5161–5181.
Kopp, P., Rank, E., Calo, V.M., Kollmannsberger, S., Efficient multi-level hp-finite elements in arbitrary dimensions. Comput. Methods Appl. Mech. Engrg., 401, 2022, 115575.
Schöberl, J., C++ 11 implementation of finite elements in NGSolve. Inst. Anal. Sci. Comput., Vienna Univ. Technol., 2014 URL https://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf.
Schöberl, J., NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1:1 (1997), 41–52.
Gruttmann, F., Wagner, W., Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections. Comput. Mech. 27:3 (2001), 199–207.
Gruttmann, F., Wagner, W., Shear correction factors for layered plates and shells. Comput. Mech. 59:1 (2017), 129–146.
Sky, A., Neunteufel, M., Münch, I., Schöberl, J., Neff, P., A hybrid H1×H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear. Comput. Mech. 68:1 (2021), 1–24.
Botti, M., Di Pietro, D.A., Salah, M., A serendipity fully discrete div-div complex on polygonal meshes. C. R. Méc., 2023.
Pauly, D., Zulehner, W., The divDiv-complex and applications to biharmonic equations. Appl. Anal. 99:9 (2020), 1579–1630.
Hu, J., Ma, R., Zhang, M., A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids. Sci. China Math. 64:12 (2021), 2793–2816.
Chen, L., Huang, X., Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension. SIAM J. Numer. Anal. 60:4 (2022), 1932–1961.
Pauly, D., Zulehner, W., The elasticity complex: compact embeddings and regular decompositions. Appl. Anal., 2022, 1–29.
Chen, L., Huang, X., A finite element elasticity complex in three dimensions. Math. Comp. 91 (2022), 2095–2127.
Raviart, P.A., Thomas, J.M., A mixed finite element method for 2-nd order elliptic problems. Galligani, I., Magenes, E., (eds.) Mathematical Aspects of Finite Element Methods, 1977, Springer Berlin Heidelberg, Berlin, Heidelberg, 292–315.
Demkowicz, L., Buffa, A., H1, H(curl) And H(div)-conforming projection-based interpolation in three dimensions: Quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Engrg. 194:2 (2005), 267–296 Selected papers from the 11th Conference on The Mathematics of Finite Elements and Applications.
Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W., De Rham diagram for hp-finite element spaces. Comput. Math. Appl. 39:7 (2000), 29–38.
Anjam, I., Valdman, J., Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements. Appl. Math. Comput. 267 (2015), 252–263.
Zaglmayr, S., High Order Finite Element Methods for Electromagnetic Field Computation. (Ph.D. thesis), 2006, Johannes Kepler Universität Linz URL https://www.numerik.math.tugraz.at/~zaglmayr/pub/szthesis.pdf.
Schöberl, J., Zaglmayr, S., High order Nédélec elements with local complete sequence properties. COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 24:2 (2005), 374–384.
Brezzi, F., Douglas, J., Marini, L.D., Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47:2 (1985), 217–235.
Chinwuba Ike, C., Mathematical solutions for the flexural analysis of Mindlin's first order shear deformable circular plates. Math. Models Eng. 4:2 (2018), 50–72.
Grätsch, T., Bathe, K.J., A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83:4 (2005), 235–265.
Hu, J., Man, H., Zhang, S., A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J. Sci. Comput. 58:2 (2014), 367–379.
Hu, J., A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation. SIAM J. Numer. Anal. 53:3 (2015), 1438–1463.