Article (Périodiques scientifiques)
A Reissner-Mindlin plate formulation using symmetric Hu-Zhang elements via polytopal transformations
SKY, Adam; Neunteufel, Michael; HALE, Jack et al.
2023In Computer Methods in Applied Mechanics and Engineering, 416, p. 116291
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2305.17249.pdf
Preprint Auteur (2.02 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Reissner-Mindlin plate; shear locking; Hu-Zhang elements; polytopal templates; polytopal transformations
Résumé :
[en] In this work we develop new finite element discretisations of the shear-deformable Reissner--Mindlin plate problem based on the Hellinger-Reissner principle of symmetric stresses. Specifically, we use conforming Hu-Zhang elements to discretise the bending moments in the space of symmetric square integrable fields with a square integrable divergence. The latter results in highly accurate approximations of the bending moments M and in the rotation field being in the discontinuous Lebesgue space , such that the Kirchhoff-Love constraint can be satisfied for t tending to zero. In order to preserve optimal convergence rates across all variables for the case t tending to zero, we present an extension of the formulation using Raviart-Thomas elements for the shear stress. We prove existence and uniqueness in the continuous setting and rely on exact complexes for inheritance of well-posedness in the discrete setting. This work introduces an efficient construction of the Hu-Zhang base functions on the reference element via the polytopal template methodology and Legendre polynomials, making it applicable to hp-FEM. The base functions on the reference element are then mapped to the physical element using novel polytopal transformations, which are suitable also for curved geometries. The robustness of the formulations and the construction of the Hu-Zhang element are tested for shear-locking, curved geometries and an L-shaped domain with a singularity in the bending moments. Further, we compare the performance of the novel formulations with the primal-, MITC- and recently introduced TDNNS methods.
Disciplines :
Mathématiques
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SKY, Adam  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Neunteufel, Michael
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Reissner-Mindlin plate formulation using symmetric Hu-Zhang elements via polytopal transformations
Date de publication/diffusion :
01 novembre 2023
Titre du périodique :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
416
Pagination :
116291
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Commentaire :
Michael Neunteufel acknowledges support by the Austrian Science Fund (FWF) project F65.
Disponible sur ORBilu :
depuis le 02 juillet 2023

Statistiques


Nombre de vues
179 (dont 22 Unilu)
Nombre de téléchargements
105 (dont 1 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
5
OpenCitations
 
0
citations OpenAlex
 
11

Bibliographie


Publications similaires



Contacter ORBilu