Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Challenges in Automatic Software Optimisation: the energy efficiency case
FISCHBACH, Tobias Michael; KIEFFER, Emmanuel; BOUVRY, Pascal
2023INTERNATIONAL CONFERENCE ON OPTIMIZATION AND LEARNING (OLA2023)
 

Documents


Texte intégral
OLA_23_postion_paper.pdf
Postprint Auteur (182.51 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automatic Software Optimisation; Energy efficiency
Résumé :
[en] ith the advent of the Exascale capability allowing supercomputers to perform at least 1018 IEEE 754 Double Precision (64 bits) operations per second, many concerns have been raised regarding the energy consumption of high-performance computing code. Recently, Frontier operated by the Oak Ridge National Laboratory, has become the first supercomputer to break the exascale barrier [1]. In total, Frontier contains 9,408 CPUs, 37,632 GPUs, and 8,730,112 cores. This world-leading supercomputer consumes about 21 megawatts which is truly remarkable as Frontier was also ranked first on the Green500 list before being recently replaced. The previous top Green500 machine, MN-3 in Japan, provided 39.38 gigaflops per watt, while the Frontier delivered 62.68 gigaflops per watt. All these infrastructure and hardware improvements are just the tip of the Iceberg. Energy-aware code is now required to minimize the energy consumption of distributed and/or multi-threaded software. For example, the data movement bottleneck is responsible for 35 − 60% of a system’s energy consumption during intra-node communication. In an HPC environment, additional energy is consumed through inter-node communication. This position paper aims to introduce future research directions to enter now in the age of energy-aware software. The paper is organized as follows. First, we introduce related works regarding measurement and energy optimisation. Then we propose to focus on the two different levels of granularity in energy optimisation.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FISCHBACH, Tobias Michael  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
KIEFFER, Emmanuel ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Challenges in Automatic Software Optimisation: the energy efficiency case
Date de publication/diffusion :
2023
Nom de la manifestation :
INTERNATIONAL CONFERENCE ON OPTIMIZATION AND LEARNING (OLA2023)
Date de la manifestation :
from 03-05-2023 to 05-05-2023
Manifestation à portée :
International
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
NETCOM
Organisme subsidiant :
IAS study
Disponible sur ORBilu :
depuis le 30 juin 2023

Statistiques


Nombre de vues
155 (dont 20 Unilu)
Nombre de téléchargements
66 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu