
Challenges in Automatic Software Optimisation: the energy
efficiency case

T. Fischbach1, E. Kieffer1, and P. Bouvry1

Luxembourg1

{tobias.fischbach, emmanuel.kieffer, pascal.bouvry}@uni.lu

1 Introduction

With the advent of the Exascale capability allowing supercomputers to perform at least 1018 IEEE
754 Double Precision (64 bits) operations per second, many concerns have been raised regarding
the energy consumption of high-performance computing code. Recently, Frontier operated by the
Oak Ridge National Laboratory, has become the first supercomputer to break the exascale barrier
[1]. In total, Frontier contains 9,408 CPUs, 37,632 GPUs, and 8,730,112 cores. This world-leading
supercomputer consumes about 21 megawatts which is truly remarkable as Frontier was also ranked
first on the Green500 list before being recently replaced. The previous top Green500 machine, MN-
3 in Japan, provided 39.38 gigaflops per watt, while the Frontier delivered 62.68 gigaflops per watt.
All these infrastructure and hardware improvements are just the tip of the Iceberg. Energy-aware
code is now required to minimize the energy consumption of distributed and/or multi-threaded
software. For example, the data movement bottleneck is responsible for 35 − 60% of a system’s
energy consumption during intra-node communication. In an HPC environment, additional energy
is consumed through inter-node communication. This position paper aims to introduce future
research directions to enter now in the age of energy-aware software. The paper is organized as
follows. First, we introduce related works regarding measurement and energy optimisation. Then
we propose to focus on the two different levels of granularity in energy optimisation.

2 Related works

2.1 Measurement

Optimizing software for energy efficiency necessitates thoroughly comprehending the energy con-
sumption of different components (e.g., CPU, DRAM, GPU) at the process level.

Commonly utilized tools, such as IPMI, are either too granular or lack the necessary precision,
such as LIKWID and Slurm, for fine-grained measurements, as they are based on the same under-
lying technology RAPL [2] (a low-level power capping framework that reports fine-grained CPU
and RAM energy consumption). Haswell is the last generation that included on-die circuitry for
measuring the consumed energy; current CPU generations only estimate the energy consumption.
Based on validation experiments, it is necessary to adjust the reported energy consumption by an
offset, but the reported values still show large deviations based on utilization as well as a large
spread [3][10]. In addition, AMD’s implementation for Ryzen and Epyc lacks certain features (e.g.,
DRAM energy).

To enhance the accuracy of the energy consumption measurement without altering the moth-
erboard, we propose an experimental setup based on sensible Hall sensors. The Hall sensors are
placed strategically to monitor the energy consumption of different CPU packages and socket
interconnections, DRAM, and PCIe connections. This approach accurately measures energy con-
sumption without measuring overhead on the experiment itself. Among the challenges that are
yet to be solved include the creation of reproducible software (e.g., interfering kernel tasks and
binary reproducibility) and hardware environment (e.g., power states and frequency control) using
NixOS to reduce noise. Due to the last generation with on-die hardware for power measurement,
our results will be valided for Haswell-era CPUs.

2.2 Automatic software optimisation

Up to now, the efforts toward an energy-aware compiler are mainly focused on either single-core or
parallel workloads based on MPI. Embecosm employs super-optimisation and machine learning to
optimize LLVM-IR to reduce the energy consumption of software [11]. Other methods try to find
the most energy-efficient combination of LLVM passes, a time-consuming and non-generalizable
approach. Despite many efforts [7], no precise model bridges the gap between coarse and fine-
grained and accurately predicts the consumed energy.



2 T. Fischbach, E. Kieffer and P. Bouvry

3 High-level Energy optimisation
3.1 Surrogate-based algorithms

Automatic software optimisation is an NP-hard optimisation problem that can only be tackled
by means of heuristics or metaheuristics(see [13]) to obtain ”good enough” approximations. The
classical strategies consisting in applying genetic algorithms or, more generally, population-based
metaheuristics are likely to fail since code evaluation is time-consuming. This explains why most
of the academic research focused only on minimal benchmarks (e.g., matrix multiplication with
LINPACK [4]). In automatic software optimisation, the objective function has no explicit repre-
sentation, and software code have to be simulated in a reproducible environment to get accurate
and meaningful results. This is even truer when considering distributed software code on high-
performance computing platforms. Therefore, we propose to consider surrogate-based optimisation
to minimize the number of simulations needed to evaluate the optimised code. Surrogate optimiza-
tion attempts to find a global minimum of an objective function using a few objective function
evaluations. For this purpose, the algorithm tries to balance the optimization process between two
goals the search for a global minimum and the speed to obtain a good solution with few objective
function evaluations.

3.2 Inferring decision rules
Our decision to choose surrogate-based optimizers will definitely help us to consider larger prob-
lems, but we doubt that there is a significant advantage to applying a complex optimisation frame-
work for every chunk of code that may exist. Why can’t we discover a set of rules connecting
code patterns with code transformation? We hope to conduct this research to the point where we
can automatically identify similarities between high-energy profiles. We could try to build machine
learning models connecting LLVM analysis passes to LLVM transformation passes to infer common
sense rules improving software energy consumption and change the pass sequence accordingly.

4 Low-level Energy optimisation
The LLVM compiler framework [9] translates, transforms, and optimises source code using an
intermediate representation (IR) in human-readable assembly[6]. From the results obtained during
the high-level energy optimization, regions that consumed the most energy are identified and
prioritized to create an energy-aware compiler.

4.1 Energy-aware compiler
A heterogeneous set of benchmarks is selected as optimization targets to reflect HPC’s highly
parallel and diverse nature. Finally, the energy consumption of performance and energy-optimised
software is compared to identify the LLVM passes that reduce the energy requirements. The LLVM-
IR is inspected concerning code regions that can be used to reduce data movement, increase
cache hits and prioritize energy-efficient instructions. Before enhancing instructions, candidates
must be identified, and suitable replacements must be selected. Creating metrics correlating the
measured energy consumption with IR code and the corresponding instructions should aid us in
this process. While we intend to infer rules based on a consistent energy consumption model, this
challenging task results in the large degree of freedom and non-linearity of interactions between
instructions, hardware implementation, and compiler optimization. Several critical factors related
to communication are to be considered for optimisation. The communication is considered by
inter- and intra-node communication and cache misses [8]. The existing MPI implementations
[12, 14] are commonly used to implement intra- and inter-node communication effectively. On an
intra-node communication scale, the energy consumption of communication is driven by inter-
socket communication, core-to-core communication, and accelerator communication. The energy
consumption of inter-node communication is affected by data movement [5] and synchronization.

4.2 Energy-aware language: a perspective
The two proposed methods represent a ”good enough” approach and try to enhance energy effi-
ciency with languages that prioritize performance. We propose purpose-built languages that fo-
cus on energy efficiency instead. Expressing algorithms in more coarse language allows the usage
of grammar evolution to automatic software creation. After sampling a sufficiently large state
space, our proposed methods can optimize the vocabulary and grammar for energy efficiency. This
purpose-built language can be extended to support more algorithms over time. Communication-
heavy algorithms, like molecular dynamics simulations or deep learning, are ideal candidates due
to their popularity and high-performance requirements.



Automatic Energy Optimization of Software 3

5 Conclusion and perspectives
Improving the energy efficiency of software and algorithms is necessary for the era of exascale
computing and IoT devices. However, current energy measurements are too coarse, especially for
communication level and instruction level optimizations. This paper proposes a precise exper-
iment based on sensitive hall sensors to measure the energy consumption of computation. We
propose high-level energy optimizations based on surrogate algorithms to infer decision rules if and
when LLVM performs specific transformations. Based on the high-level results, the most energy-
consuming computation is identified, and low-level energy optimizations concerning intra- and
inter-node communication are performed on an instruction level. Nevertheless, those methods try
to transform performance-optimised languages to be more energy efficient. Lastly, we propose a
purpose-built language with energy efficiency in mind.

Acknowledgement
Tobias Fischbach acknowledges financial support of the Institute for Advanced Studies of the
University of Luxembourg through a YOUNG ACADEMICS Grant (YOUNG ACADEMICS-2022-
NETCOM).

References

1. The beating heart of the world’s first exascale supercomputer. https://spectrum.ieee.org/frontier-
exascale-supercomputer. Accessed: 2023-01-24.

2. Intel® 64 and IA-32 Architectures Software Developer Manuals.
3. Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. A Validation of DRAM RAPL Power

Measurements. In Proceedings of the Second International Symposium on Memory Systems, MEMSYS
’16, pages 455–470. Association for Computing Machinery, October 2016. Place: New York, NY, USA.

4. Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark: past, present and
future. Concurr. Comput. Pract. Exp., 15(9):803–820, 2003.

5. Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki, Nathan Beckmann,
and Brandon Lucia. RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 546–564,
October 2022.

6. Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder.
Static analysis of energy consumption for LLVM IR programs, July 2015. arXiv:1405.4565 [cs].

7. Franz Christian Heinrich, Tom Cornebize, Augustin Degomme, Arnaud Legrand, Alexandra Carpen-
Amarie, Sascha Hunold, Anne-Cécile Orgerie, and Martin Quinson. Predicting the Energy-
Consumption of MPI Applications at Scale Using Only a Single Node. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pages 92–102, September 2017. ISSN: 2168-9253
tex.eventtitle: 2017 IEEE International Conference on Cluster Computing (CLUSTER).

8. Alla G. Kravets and Vitaly Egunov. The Software Cache Optimization-Based Method for Decreasing
Energy Consumption of Computational Clusters. Energies, 15(20):7509, January 2022. Publisher:
Multidisciplinary Digital Publishing Institute.

9. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. In International Symposium on Code Generation and Optimization, 2004. CGO 2004., pages
75–86, San Jose, CA, USA, 2004. IEEE.

10. Unai Lopez-Novoa. Exploring Performance and Energy Consumption Differences between Recent Intel
Processors. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 263–
267, August 2019.

11. James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying Compiler Options to Minimize
Energy Consumption for Embedded Platforms. The Computer Journal, 58(1):95–109, January 2015.

12. Henrik Valter, Axel Karlsson, and Miquel Pericàs. Energy-Efficiency Evaluation of OpenMP
Loop Transformations and Runtime Constructs, September 2022. arXiv: 2209.04317 [cs] Number:
arXiv:2209.04317.

13. Sébastien Varrette, Frédéric Pinel, Emmanuel Kieffer, Grégoire Danoy, and Pascal Bouvry. Automatic
software tuning of parallel programs for energy-aware executions. In Roman Wyrzykowski, Ewa Deel-
man, Jack Dongarra, and Konrad Karczewski, editors, Parallel Processing and Applied Mathematics,
pages 144–155, Cham, 2020. Springer International Publishing.

14. Akshay Venkatesh, Abhinav Vishnu, Khaled Hamidouche, Nathan Tallent, Dhabaleswar Panda, Darren
Kerbyson, and Adolfy Hoisie. A case for application-oblivious energy-efficient MPI runtime. In SC ’15:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, November 2015. ISSN: 2167-4337 tex.eventtitle: SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis.


