Pelvis Biomechanics; Computational Experiment Design; Muscle and joint forces
Abstract :
[en] Biomechanics of the human pelvis and the associated implants are still a medical and engineering debated topic. Today, no biomechanical testing setup is dedicated to pelvis testing and associated reconstructive implants with accepted clinical relevance. This paper uses the Computational Experiment Design procedure to numerically design a biomechanical test stand that emulates the pelvis physiological gait loading. The numerically designed test stand reduces the 57 muscles and joints' contact forces iteratively to only four force actuators. Two hip joints' contact forces and two equivalent muscle forces with a maximum magnitude of 2.3 KN are applied in a bilateral reciprocating action. The stress distribution of the numerical model of the developed test stand is very similar to that of the numerical model of the pelvis with all 57 muscles and joint forces. For instance, at the right arcuate line, the state of stress is identical. However, at the location of superior rami, there is a deviation ranging from 2% to 20% between the two models. The boundary conditions and the nature of loading adopted in this study are more realistic regarding the clinical relevance than state-of-the-art. The numerically developed biomechanical testing setup of the pelvis in this numerical study (part I - Computational Design of Experiments) was found to be valid for the experimental testing of the pelvis. The construct of the testing setup and the experimental testing of an intact pelvis under gait loading is discussed in detail in part II - Experimental Testing.
Disciplines :
Mechanical engineering
Author, co-author :
SOLIMAN, Ahmed Abdelsalam Mohamed ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Ricci, Pierre-Louis; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
KEDZIORA, Slawomir ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Kelm, Jens; Chirurgisch Orthopädisches Zentrum Illingen, Illingen, Deutschland
Gerich, Torsten; Centre Hospitalier de Luxembourg, Luxembourg, Luxemburg > Traumatologie
MAAS, Stefan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
Developing a Biomechanical Testing Setup of the Pelvis, Part I - Computational Design of Experiments
Publication date :
May 2023
Journal title :
Journal of Biomechanical Engineering
ISSN :
0148-0731
eISSN :
1528-8951
Publisher :
American Society of Mechanical Engineers (ASME), New-York, United States - New York
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
Funders :
This research is funded by the Department of Engineering of the University of Luxembourg.
Chen, H.-T., Wang, Y.-C., Hsieh, C.-C., Su, L.-T., Wu, S.-C., Lo, Y.-S., Chang, C.-C., and Tsai, C.-H., 2019, “Trends and Predictors of Mortality in Unstable Pelvic Ring Fracture: A 10-Year Experience With a Multidisciplinary Institutional Protocol,” World J. Emerg. Surg., 14(1), p. 61.
Buller, L. T., Best, M. J., and Quinnan, S. M., 2016, “A Nationwide Analysis of Pelvic Ring Fractures,” Geriatr. Orthop. Surg. Rehabil., 7(1), pp. 9–17.
Hertz, K., and Santy-Tomlinson, J., 2018, Fragility Fracture Nursing, Springer International Publishing, Cham, Switzerland.
Borgstr€om, F., Karlsson, L., Orts€ater, G., Norton, N., Halbout, P., Cooper, C., Lorentzon, M., et al., 2020, “Fragility Fractures in Europe: Burden, Management and Opportunities,” Arch. Osteoporosis, 15(1), p. 59.
Tachibana, T., Yokoi, H., Kirita, M., Marukawa, S., and Yoshiya, S., 2009, “Instability of the Pelvic Ring and Injury Severity Can Be Predictors of Death in Patients With Pelvic Ring Fractures: A Retrospective Study,” J. Orthop. Traumatol., 10(2), pp. 79–82.
Acklin, Y. P., Zderic, I., Richards, R. G., Schmitz, P., Gueorguiev, B., and Grechenig, S., 2018, “Biomechanical Investigation of Four Different Fixation Techniques in Sacrum Denis Type II Fracture With Low Bone Mineral Density,” J. Orthop. Res., 36(6), pp. 1624–1629.
Gr€uneweller, N., Raschke, M. J., Zderic, I., Widmer, D., W€ahnert, D., Gueorguiev, B., Richards, R. G., Fuchs, T., and Windolf, M., 2017, “Biomechanical Comparison of Augmented Versus Non-Augmented Sacroiliac Screws in a Novel Hemi-Pelvis Test Model,” J. Orthop. Res., 35(7), pp. 1485–1493.
Lodde, M. F., Katthagen, J. C., Schopper, C. O., Zderic, I., Richards, G., Gueorguiev, B., Raschke, M. J., and Hartensuer, R., 2021, “Biomechanical Comparison of Five Fixation Techniques for Unstable Fragility Fractures of the Pelvic Ring,” J. Clin. Med., 10(11), p. 2326.
Berber, O., Amis, A. A., and Day, A. C., 2011, “Biomechanical Testing of a Concept of Posterior Pelvic Reconstruction in Rotationally and Vertically Unstable Fractures,” J. Bone Jt. Surg., Br. Vol., 93-B(2), pp. 237–244.
Vigdorchik, J. M., Esquivel, A. O., Jin, X., Yang, K. H., Onwudiwe, N. A., and Vaidya, R., 2012, “Biomechanical Stability of a Supra-Acetabular Pedicle Screw Internal Fixation Device (INFIX) vs External Fixation and Plates for Vertically Unstable Pelvic Fractures,” J. Orthop. Surg. Res., 7(1), p. 31.
Osterhoff, G., Tiziani, S., Hafner, C., Ferguson, S. J., Simmen, H.-P., and Werner, C. M. L., 2016, “Symphyseal Internal Rod Fixation Versus Standard Plate Fixation for Open Book Pelvic Ring Injuries: A Biomechanical Study,” Eur. J. Trauma Emerg. Surg., 42(2), pp. 197–202.
McLachlin, S., Lesieur, M., Stephen, D., Kreder, H., and Whyne, C., 2018, “Biomechanical Analysis of Anterior Ring Fixation of the Ramus in Type C Pelvis Fractures,” Eur. J. Trauma Emerg. Surg., 44(2), pp. 185–190.
Becker, C. A., Kammerlander, C., Kußmaul, A. C., Woiczinski, M., Thorw€achter, C., Zeckey, C., Sommer, F., Linhart, C., Weidert, S., Suero, E. M., B€ocker, W., and Greiner, A., 2019, “Modified Less Invasive Anterior Subcutaneous Fixator for Unstable Tile-C-Pelvic Ring Fractures: A Biomechanical Study,” Biomed. Eng. Online, 18(1), p. 38.
Goldsztajn, F., Mariolani, J. R. L., and Belangero, W. D., 2020, “Placas Anteriores São Mais Efetivas Do Que Parafusos Iliossacrais Na Fixação Da Articulação Sacroilıaca? Estudo Biomecânico,” Rev. Bras. Ortop. (Sao Paulo), 55(4), pp. 497–503.
Wu, Y.-D., Cai, X.-H., Liu, X.-M., and Zhang, H.-X., 2013, “Biomechanical Analysis of the Acetabular Buttress-Plate: Are Complex Acetabular Fractures in the Quadrilateral Area Stable After Treatment With Anterior Construct Plate-1/3 Tube Buttress Plate Fixation?,” Clinics, 68(7), pp. 1028–1033.
Lee, C.-H., Hsu, C.-C., and Huang, P.-Y., 2017, “Biomechanical Study of Different Fixation Techniques for the Treatment of Sacroiliac Joint Injuries Using Finite Element Analyses and Biomechanical Tests,” Comput. Biol. Med., 87, pp. 250–257.
Chaiyamongkol, W., Kritsaneephaiboon, A., Bintachitt, P., Suwannaphisit, S., and Tangtrakulwanich, B., 2018, “Biomechanical Study of Posterior Pelvic Fixations in Vertically Unstable Sacral Fractures: An Alternative to Triangular Osteosynthesis,” Asian Spine J., 12(6), pp. 967–972.
Liu, L., Zeng, D., Fan, S., Peng, Y., Song, H., Jin, D., and Zeng, L., 2021, “Biomechanical Study of Tile C3 Pelvic Fracture Fixation Using an Anterior Internal System Combined With Sacroiliac Screws,” J. Orthop. Surg. Res., 16(1), p. 225.
Klima, S., Grunert, R., Ondruschka, B., Scholze, M., Seidel, T., Werner, M., and Hammer, N., 2018, “Pelvic Orthosis Effects on Posterior Pelvis Kinematics an In-Vitro Biomechanical Study,” Sci. Rep., 8(1), p. 15980.
Ramezani, M., Klima, S., de la Herverie, P. L. C., Campo, J., Le Joncour, J.-B., Rouquette, C., Scholze, M., and Hammer, N., 2019, “In Silico Pelvis and Sacroiliac Joint Motion: Refining a Model of the Human Osteoligamentous Pelvis for Assessing Physiological Load Deformation Using an Inverted Validation Approach,” BioMed Res. Int., 2019, pp. 1–12.
Agarwal, Y., Doebele, S., Windolf, M., Shiozawa, T., Gueorguiev, B., and Stuby, F. M., 2014, “Two-Leg Alternate Loading Model—A Different Approach to Biomechanical Investigations of Fixation Methods of the Injured Pelvic Ring With Focus on the Pubic Symphysis,” J. Biomech., 47(2), pp. 380–386.
Ricci, P.-L., 2019, “Numerical Analysis of Gait Load Distribution in the Human Pelvis and Design of a Biomechanical Testing Device: Experimental Assessment of Two Implants for Anterior Fragility Fractures,” Ph.D. thesis, University of Luxembourg, Luxembourg.
Ricci, P.-L., Maas, S., Gerich, T., and Kelm, J., 2017, “An Advanced Approach to Design Experiments to Investigate the Biomechanics of the Pelvis,” Proceedings of the 23rd Congress of the European Society of Biomechanics, Seville, Spain, July 2–5.
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and Gerig, G., 2006, “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage, 31(3), pp. 1116–1128.
Autodesk, 2020, “Autodesk Meshmixer,” Autodesk Inc., San Francisco, CA, accessed May 14, 2020, https://www.meshmixer.com/
Tannast, M., Murphy, S. B., Langlotz, F., Anderson, S. E., and Siebenrock, K. A., 2006, “Estimation of Pelvic Tilt on Anteroposterior X-Rays—A Comparison of Six Parameters,” Skeletal Radiol., 35(3), pp. 149–155.
Watson, P. J., Dostanpor, A., Fagan, M. J., and Dobson, C. A., 2017, “The Effect of Boundary Constraints on Finite Element Modelling of the Human Pelvis,” Med. Eng. Phys., 43, pp. 48–57.
Volinski, B., Kalra, A., and Yang, K., 2018, “Evaluation of Full Pelvic Ring Stresses Using a Bilateral Static Gait-Phase Finite Element Modeling Method,” J. Mech. Behav. Biomed. Mater., 78, pp. 175–187.
Hu, P., Wu, T., Wang, H., Qi, X., Yao, J., Cheng, X., Chen, W., and Zhang, Y., 2017, “Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission,” Orthop. Surg., 9(1), pp. 115–122.
Skytte, T. L., Mikkelsen, L. P., Sonne-Holm, S., and Wong, C., 2017, “Using a Finite Element Pediatric Hip Model in Clinical Evaluation—A Feasibility Study,” J. Bioeng. Biomed. Sci., 7(5), p. 1000241.
Arkusz, K., Klekiel, T., Niezgoda, N., and Be R dzinski, R., 2018, “The Influence of Osteoporotic Bone Structures of the Pelvic-Hip Complex on Stress Distribution Under Impact Load,” Acta Bioeng. Biomech., 20(1), pp. 29–38.
Liu, D., Jiang, J., Wang, L., Liu, J., Jin, Z., Gao, L., Hua, Y., Cai, Z., and Hua, Z., 2019, “In Vitro Experimental and Numerical Study on Biomechanics and Stability of a Novel Adjustable Hemipelvic Prosthesis,” J. Mech. Behav. Biomed. Mater., 90, pp. 626–634.