Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
ML-based Compliance Verification of Data Processing Agreements against GDPR
AMARAL CEJAS, Orlando; ABUALHAIJA, Sallam; BRIAND, Lionel
2023In Proceedings of the 31st IEEE International Requirements Engineering Conference (RE'23), Hannover, Germany, September 4-8, 2023
Peer reviewed
 

Documents


Texte intégral
ML-based Compliance Verification of Data Processing Agreements against GDPR.pdf
Postprint Éditeur (1.04 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Requirements Engineering (RE); Regulatory Compliance; The General Data Protection Regulation (GDPR); Data Processing Agreement (DPA); Machine Learning (ML); Natural Language Processing (NLP)
Résumé :
[en] Most current software systems involve processing personal data, an activity that is regulated in Europe by the general data protection regulation (GDPR) through data processing agreements (DPAs). Developing compliant software requires adhering to DPA-related requirements in GDPR. Verifying the compliance of DPAs entirely manually is however time-consuming and error-prone. In this paper, we propose an automation strategy based on machine learning (ML) for checking GDPR compliance in DPAs. Specifically, we create, based on existing work, a comprehensive conceptual model that describes the information types pertinent to DPA compliance. We then develop an automated approach that detects breaches of compliance by predicting the presence of these information types in DPAs. On an evaluation set of 30 real DPAs, our approach detects 483 out of 582 genuine violations while introducing 93 false violations, achieving thereby a precision of 83.9% and recall of 83.0%. We empirically compare our approach against an existing approach which does not employ ML but relies on manually-defined rules. Our results indicate that the two approaches perform on par. Therefore, to select the right solution in a given context, we discuss differentiating factors like the availability of annotated data and legal experts, and adaptation to regulation changes.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
AMARAL CEJAS, Orlando  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
ML-based Compliance Verification of Data Processing Agreements against GDPR
Date de publication/diffusion :
08 septembre 2023
Nom de la manifestation :
31st IEEE International Requirements Engineering Conference
Lieu de la manifestation :
Hannover, Allemagne
Date de la manifestation :
from 04-09-2023 to 08-09-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 31st IEEE International Requirements Engineering Conference (RE'23), Hannover, Germany, September 4-8, 2023
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR13759068 - Artificial Intelligence-enabled Automation For Gdpr Compliance, 2019 (01/01/2020-31/12/2022) - Lionel Briand
Organisme subsidiant :
FNR - Luxembourg National Research Fund
Disponible sur ORBilu :
depuis le 24 juin 2023

Statistiques


Nombre de vues
807 (dont 52 Unilu)
Nombre de téléchargements
841 (dont 12 Unilu)

citations OpenAlex
 
19

Bibliographie


Publications similaires



Contacter ORBilu