Article (Périodiques scientifiques)
One evolutionary algorithm deceives humans and ten convolutional neural networks trained on ImageNet at image recognition
TOPAL, Ali Osman; CHITIC, Ioana Raluca; LEPREVOST, Franck
2023In Applied Soft Computing, 143, p. 110397
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S1568494623004155-main.pdf
Postprint Éditeur (7.38 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Adversarial attacks; Black-box attacks; Convolutional neural network; Evolutionary algorithm; Image classification
Résumé :
[en] Convolutional neural networks (CNNs) are widely used in computer vision, but can be deceived by carefully crafted adversarial images. In this paper, we propose an evolutionary algorithm (EA) based adversarial attack against CNNs trained on ImageNet. Our EA-based attack aims to generate adversarial images that not only achieve a high confidence probability of being classified into the target category (at least 75%), but also appear indistinguishable to the human eye in a black-box setting. These constraints are implemented to simulate a realistic adversarial attack scenario. Our attack has been thoroughly evaluated on 10 CNNs in various attack scenarios, including high-confidence targeted, good-enough targeted, and untargeted. Furthermore, we have compared our attack favorably against other well-known white-box and black-box attacks. The experimental results revealed that the proposed EA-based attack is superior or on par with its competitors in terms of the success rate and the visual quality of the adversarial images produced.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TOPAL, Ali Osman ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
CHITIC, Ioana Raluca ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LEPREVOST, Franck ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
One evolutionary algorithm deceives humans and ten convolutional neural networks trained on ImageNet at image recognition
Date de publication/diffusion :
11 mai 2023
Titre du périodique :
Applied Soft Computing
ISSN :
1568-4946
eISSN :
1872-9681
Maison d'édition :
Elsevier
Volume/Tome :
143
Pagination :
110397
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 22 juin 2023

Statistiques


Nombre de vues
227 (dont 10 Unilu)
Nombre de téléchargements
133 (dont 3 Unilu)

citations Scopus®
 
21
citations Scopus®
sans auto-citations
18
citations OpenAlex
 
24

Bibliographie


Publications similaires



Contacter ORBilu