
Applied Soft Computing 143 (2023) 110397

e
v
c
f
d
t
d
l
t
a
i
n

t
p
e
t
C
a

v
d

h
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

One evolutionary algorithm deceives humans and ten convolutional
neural networks trained on ImageNet at image recognition
Ali Osman Topal ∗, Raluca Chitic, Franck Leprévost
University of Luxembourg, House of Numbers, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Grand Duchy of Luxembourg

a r t i c l e i n f o

Article history:
Received 25 February 2022
Received in revised form 29 March 2023
Accepted 1 May 2023
Available online 11 May 2023

Keywords:
Adversarial attacks
Black-box attacks
Convolutional neural network
Evolutionary algorithm
Image classification

a b s t r a c t

Convolutional neural networks (CNNs) are widely used in computer vision, but can be deceived by
carefully crafted adversarial images. In this paper, we propose an evolutionary algorithm (EA) based
adversarial attack against CNNs trained on ImageNet. Our EA-based attack aims to generate adversarial
images that not only achieve a high confidence probability of being classified into the target category
(at least 75%), but also appear indistinguishable to the human eye in a black-box setting. These
constraints are implemented to simulate a realistic adversarial attack scenario. Our attack has been
thoroughly evaluated on 10 CNNs in various attack scenarios, including high-confidence targeted, good-
enough targeted, and untargeted. Furthermore, we have compared our attack favorably against other
well-known white-box and black-box attacks. The experimental results revealed that the proposed
EA-based attack is superior or on par with its competitors in terms of the success rate and the visual
quality of the adversarial images produced.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
d
t
a
k
t
a

H
t

g
w
c
m
f
n
b
a

1. Introduction

Convolutional neural networks (CNNs) trained on large sets of
xamples have recently become the dominant tool for computer
ision tasks [1–5]. CNN is a type of deep learning algorithm that is
omposed of various layers: convolution layer, pooling layer, and
ully connected layer. The convolution layer processes the input
ata using a convolution operation, which enables the network
o identify different features and their arrangement in the input
ata. The pooling layer down-samples the output of the convo-
ution layers by reducing the spatial resolution while increasing
he abstraction of the learned features. The fully connected layers
llow the network to create a complex decision boundary for the
nput data by connecting all the neurons from one layer to the
ext, which enables non-linear decision-making [6].
The innovation of CNNs lies in their ability to extract fea-

ures from input data through a training process called back-
ropagation. Under this process, early convolutional layers
xtract simple features, such as edges, whereas later layers ex-
ract more complex semantic ones [7]. This technique empowers
NNs to detect specific features anywhere in the input images
nd classify the image in a given category.
However, CNNs, like other machine learning models, can be

ulnerable to adversarial attacks, which are attacks specifically
esigned to trick the model into making incorrect predictions.

∗ Corresponding author.
E-mail address: aliosman.topal@uni.lu (A.O. Topal).
ttps://doi.org/10.1016/j.asoc.2023.110397
568-4946/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
Adversarial attacks on CNNs can take the form of adversarial
images, which are images that have been manipulated in a way
that is imperceptible to a human but that cause the CNN to
make an incorrect prediction. Adversarial attacks can be a serious
problem if the CNN is used in a safety-critical application, such as
self-driving cars or medical diagnosis [8–11].

Such attacks are classified as white box or black box attacks,
epending on the amount of information available to the at-
acker. In the former case, an attacker has access to the CNN’s
rchitecture and parameters, whereas no prior knowledge of any
ind is assumed in the latter case. Depending on their objectives,
hese attacks can be either targeted or untargeted. Starting from
n image A classified by a CNN in a category ca, an image D

is adversarial for the target scenario if the CNN classifies it in
a predefined target category ct ̸= ca. D is adversarial for the
untargeted scenario if the CNN classifies it in a category c ̸= ca,
without requiring anything for c beyond being distinct from ca.
owever, in both scenarios, D is expected to remain visually close
o A for a human eye.

Over the past few years, the prevalent use of CNNs has led to a
rowing interest in their robustness/stability. Christian et al. [11]
ere the first to discover that applying a specific, barely per-
eptible perturbation to an image can cause the network to
isclassify the image. After this observation, many researchers

ocused on generating adversarial attacks to challenge the robust-
ess/stability of CNNs. Papernot et al. [12] proposed an algorithm
ased on forward derivative computation. They constructed neg-
tive saliency maps that identify the features of the input that
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2023.110397
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110397&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aliosman.topal@uni.lu
https://doi.org/10.1016/j.asoc.2023.110397
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

t
W
t
C
s
t
i
a
e
M
o
C
F

a

t
m
a

k
I
T

Fig. 1. The images in the first row represent original images and in the second row the corresponding adversarial images and their respective class labels that are
created by (a) One-Pixel attack [13], (b) Few-Pixels attack [12], (c) Fooling Transfer Net (FTN) [14], (d) Scratch that! [15], and (e) our EA-based attack [10,16,17].
a
c

l
o
b
d

a

c
f
D

b

t

most affect the classification of the output. Thus, by changing only
a few pixels (about 4%) of an input image, they produced adver-
sarial images. But the perturbations were obvious to a human eye
(see Fig. 1(a)). Later, Su et al. [13] generated a targeted black-box
attack using the differential evolution algorithm that perturbed
a single pixel of the image, resulting in the misclassification of
the target CNN. However, the confidence level of the adversarial
images was too low (23%) for images of size 224 × 224 and
he perturbation was obvious to the human eye (see Fig. 1(b)).
u [14] then raised the bar and developed a universal mapping

o map inputs to adversarial images. These images can deceive
NNs to classify them all into a target class, and they also have
trong transferability. However, Wu’s attack has similar problems
o [12,13] in terms of noticeable perturbations on the adversarial
mages (see Fig. 1(c)). Similar to [13], Malhar et al. [15] developed
black-box attack in a constrained threat model using differential
volution algorithms. Unlike the one-pixel and few-pixels attacks,
alhar’s attacks can modify a small portion of pixels in the form
f scratches on an image. Even though they managed to fool the
NNs, the perturbations were still noticeable to a human eye (see
ig. 1(d)).
Given a CNN C trained on ImageNet, this paper describes

n evolutionary algorithm EAtarget,C , that amounts to a generic,
(mainly) targeted, black-box EA-based attack, with the additional
strong requirement that the obtained adversarial images should
not only be very close, but should actually be indistinguishable
from the original to a human eye.

In our previous studies [10,16,17], we showed that our EA-
based attack can generate adversarial images for the targeted
scenario against a particular CNN, VGG16 trained on CIFAR-10 to
sort images of size 32 × 32 into 10 categories. The adversarial
image pictured in Fig. 1(e) was obtained that way, where the
added noise remained ‘‘undercover’’.

The present study substantially scales up this challenge. In-
deed, EAtarget,C attacks 10 stable, diverse, state-of-the-art CNNs
trained on the ImageNet dataset, namely, DenseNet121,
DenseNet169, DenseNet201, MobileNet, NASNetMobile,
ResNet50, ResNet101, ResNet152, VGG16, and VGG19. The al-
gorithm now deals with images of size 244 × 244, hence 49
times larger than those of the CIFAR-10 case. Furthermore, for the
target scenario, we require EAtarget,C to produce adversarial images
hat these CNNs label as belonging to the target category with a
inimum confidence of 0.75 (which we refer to as a 0.75-strong
dversarial image in this paper).
We also evaluated our attack by comparing it to six well-

nown attacks, including four white-box attacks (FGSM, BIM, PGD
nf, and PGD L2) and two black-box attacks (SimBA and AdvGAN).
he attacks are compared in targeted and untargeted scenarios.
Our contributions are summarized as follows.

• Our work provides a new perspective on adversarial attacks
in black-box settings and shows the potential of evolution-
ary algorithms in this field.
2

• We show that our attack can successfully generate adver-
sarial images with high confidence and high visual quality
against 10 state-of-the-art CNNs trained on the ImageNet
dataset.

• The effectiveness of six prominent adversarial attacks is
thoroughly evaluated using 10 CNNs trained on the Ima-
geNet dataset. Such a level of evaluation was not provided
before, even not in the attack’s original papers.

• We show that our EA-based attack compares favorably with
these six attacks.

The remainder of this paper is organized as follows. Section 2
describes the criteria an image should fulfill to be considered
adversarial for a CNN. Section 3 summarizes the main conceptual
features of our evolutionary algorithm EAtarget,C . Substantial ex-
periments are performed to fine-tune the parameters of the EA:
the population size, crossover range, and termination condition.
Section 4 specifies our evaluation methodology and the results
are summarized in Section 5. Section 6 provides the comparison
of our attack with six well-known attacks. After the concluding
Section 7, that essentially wraps up the results of this study, two
Annexes with additional data (ancestor images, classification by
the CNNs with label values, detailed success rates, and samples
of adversarial images) complete the paper. Annex A deals with
ancestor images, and Annex B with adversarial images. The code
leading to these results is available under the link: ‘‘https://
github.com/aliotopal/EAbasedAttack.git’’

2. Adversarial image requisites

Let C1, . . . , Cx be a series of different CNNs trained on the Im-
geNet [18] dataset to label images into 1000 categories c1, . . . ,
1000. To express the target scenario on these x CNNs, one first
considers an ancestor image Aa, that a human and all C1, . . . , Cx
abel as belonging to the same ancestor category ca. Concretely, if
C
I = (oC

I[1], . . . , oC
I[1000]) denotes the output vector produced

y CNN C (trained on ImageNet) when fed with image I, one
efines a as :

= arg max1≤j≤1000

(
oC1
Aa

)
= · · · = arg max1≤j≤1000

(
oCx
Aa

)
. (1)

Then, one chooses a common target category t ̸= a (hence
t ̸= ca) among the categories of ImageNet. Finally, one derives
rom Aa a series of x images D1

a,t (Aa), . . . ,Dx
a,t (Aa), where each

k
a,t (Aa) is adversarial for Ck in the following sense.
On the one hand, one requires that Ck classifies Dk

a,t (Aa) as
elonging to ct ; namely, Eq. (2) holds:

= arg max1≤j≤1000

(
oCk

k

)
. (2)
Da,t (Aa)

https://github.com/aliotopal/EAbasedAttack.git
https://github.com/aliotopal/EAbasedAttack.git
https://github.com/aliotopal/EAbasedAttack.git


A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

1
1
1
1

1
1
1
1
1

Although this condition is often considered sufficient, we ad-
ditionally require that the ct-label values of the output vectors of
the considered CNNs satisfy:

oCk
Dk

a,t (Aa)
[t] ≥ τ , (3)

for τ a fixed constant threshold value ∈ [0, 1], common to all
CNNs. The closer τ is to 1, the higher the confidence with which
Ck classifies Dk

a,t (Aa) in the target category ct . Indeed, since the
second best label value is necessarily <1 − τ , the margin of
confidence between the best and the second best label values is
assessed by the difference τ−(1−τ ) = 2τ−1 (a choice of τ > 0.5
clearly ensures that this quantity is > 0).

On the other hand, the adversarial Dk
a,t (Aa) should remain so

close to the ancestor Aa that a human would not be able to
distinguish between both images. The visual difference between
the two images is assessed thanks to a convenient metric d. In
practice, for d, we shall take the L2-distance [19,20] (Sections 3.2,
5; note that other distances are conceivable, such as SSIM [21]).

Eqs. (2) and (3) lead us to define the concepts of a good enough
adversarial image and of a τ -strong adversarial image, respectively.
A good enough adversarial image is an adversarial image that the
CNN classifies as belonging to the target category ct , without any
requirement on the ct-label value beyond being strictly dominant
among all label values. A τ -strong adversarial image is an adver-
sarial image that the CNN not only classifies as belonging to the
target category ct , but for which its ct-label value ≥ τ (for τ is a
sufficiently convincing threshold value).

Hence, the target attack attempts to create good enough adver-
sarial images or τ -strong adversarial images Dk

a,t (Aa) such that the
distance d(Dk

a,t (Aa),Aa) remains small.
In practice, we set τ = 0.75 in our experiments (Sections 3.2,

5). Indeed, this choice ensures a high confidence in the classifica-
tion of the CNNs, since it provides a margin of confidence ≥0.50
with respect to the next best label value (necessarily ≤0.25).

Let us complete this section by stating the untargeted attack.
Starting fromAa, this attack aims to create an imageD(Aa), which
is still close enough to Aa as measured by d(D(Aa),Aa), that the
CNN classifies in a category c ̸= ca. The untargeted attack does
not require anything from c , as long as it differs from ca.

In particular, an untargeted attack is usually easier to perform
than a targeted attack.

3. Design of EAtarget,C and choice of the population size

The purpose of this section is twofold. First, we present the key
features of our evolutionary algorithm EAtarget,C , whose aim is to
construct adversarial images for the target scenario against a CNN
C trained on a dataset, and we briefly highlight how these features
differ from classical EAs [22]. Second, we describe a series of
tests performed on our EA using different population sizes. The
outcome leads to the selection of a convenient population size
for the challenges addressed in Sections 4 and 5.

3.1. Key features of EAtarget,C

Classical EAs [22] begin with an initial population of N ran-
domly generated individuals. The initial population of our al-
gorithm, EAtarget,C , already differs in this regard because it is
composed of N identical individuals. Thanks to an appropriate
fitness function, classical EAs proceed to the search for better
individuals, generation after generation, through reproduction,
cross-overs, and mutations. This is also the case for EAtarget,C with
specifically designed mutations and cross-overs. The details of
these adjustments and the results of comparison tests between
(a variant of) EAtarget,C and classical EAs are given in [10]. The
pseudocode of EAtarget,C is presented in Algorithm 1, and its main
3

Algorithm 1 EAtarget,C with population size = N
1: BEGIN
2: t = 0
3: INITIALISE population P(t = 0) = Aa × N;
4: EVALUATE P(t = 0);
5: while isNotTerminated() do
6: SELECT:
7: Pe(t) = P(t).selectElites(Ne = 10); / elites
8: Pw(t) = P(t).selectWorsts(N/2); / "didn’t make it"
9: Pm(t) = P(t) − (Pe(t) ∪ Pw(t)); /middle-class
0: RECOMBINE / MUTATE:
1: Pkeep(t) = (Pm(t) ∪ Pw(t)).randomSelect(N/2 − Ne) ∪ Pe(t);
2: mutate(Pkeep(t) ∪ Pm(t));
3: Pc (t) = reproduction(Pkeep(t), Pm(t));
4: EVALUATE:
5: P(t + 1) = evaluate(Pe(t), Pc (t));
6: t = t + 1
7: end
8: END

components are described below. Throughout the algorithm (and
in the paper), we assume that N is an even integer.

Goal of EAtarget,C .— The EA is instantiated on the following
challenge for C a given CNN trained on ImageNet. Given a couple
(ca, ct ) of ancestor and target categories, and given an ancestor
image Aa that C classifies as belonging to ca, the purpose of the
EA is to construct an adversarial image for the target scenario
described in Section 2.

Termination condition.— The termination condition depends
on whether one focuses on good enough adversarial images or on
τ -strong adversarial images.

In the former case, the algorithm stops if it creates a good
enough adversarial image in less than a fixed number X of genera-
tions (for X , the maximum number of generations to be defined).
In this case, the attack is considered to be successful, and the first
corresponding good enough adversarial image is stored.

In the latter case, the algorithm stops if it creates a τ -strong
adversarial image in less than X generations. Similarly, in this case,
the attack is considered successful, and the first corresponding
τ -strong adversarial image is stored.

The algorithm stops after X generations anyhow, even if it
does not succeed in producing a good enough adversarial image
in the former case, or a τ -strong adversarial image in the latter
case. Accordingly, the attack is considered unsuccessful.

Population initialization.— The population size N is fixed
and remains the same, generation after generation. The initial
population is set to N copies of the ancestor Aa.

Fitness function and evaluation.— Each individual image ind
of the population of a given generation is evaluated using a
fitness function fit(ind) (line 2–4 and 14–15 in Algorithm 1). This
fitness function, representing the objective of the evolution of
ind towards an image classified by C as belonging to the target
category ct , is defined as:

fit(ind) = oC
ind[t]. (4)

The higher an individual’s fitness value, the fitter this individual.
Selection, Mutation, and Cross-over.— The different steps of

the evolution from a population P(t) of a given generation to the
next one P(t + 1), namely selection, mutations, and cross-overs,
as summarized below, are similar to those detailed in [23].

The individuals composing population P(t) of a given gen-
eration are evaluated using the fitness function. Its N popula-
tion members are sorted into three groups, depending on their
respective scores.



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

u
u
d
r
(
N
A
s
c
i
t

c
r
r
m
T

5
A
w
r
p
o
a
a
e
w
U

3

E
a
b
p
S

t
a
c
1
a
f
v
u
i

–Selection: The elite Pe is composed of the Ne = 10 individ-
als with the best fitness values. These individuals are moved
nchanged to the next generation (meaning that their members
o not undergo mutations or cross-overs). The lower class Pw

epresents half of the total population. It is composed of the
N/2) individuals with the worst fitness values. The remaining
/2 − Ne individuals constitute the middle class Pm (line 6–9 in
lgorithm 1). These classes are then prepared for the evolution
tep. The lower class Pw is discarded and replaced with a newly
reated ‘‘keep’’ group of N/2 individuals. The ‘‘keep’’ group Pkeep
s composed of the Pe, and of (N/2)−Ne random individuals from
he Pw and Pm classes from P(t) (line 11 in Algorithm 1)

–Mutation: Mutation is applied to the ‘‘keep’’ and ‘‘middle
lass’’ group to increase the exploration capability of the algo-
ithm (line 12 in Algorithm 1). Pixel mutations are performed by
andomly choosing (with a power law) the number of pixels to
utate, their location, and the channel (R, G, or B) to be modified.
he corresponding value of this channel is modified by +1 or −1.

The choice of such small variations is intended to minimize the
modifications applied to the running image. Indeed, we want to
reduce the ultimate L2-distance between the adversarial and the
ancestor images so that a human eye would be unlikely to notice
any difference between the two.

–Crossover: Crossovers are essentially obtained by swapping
a rectangular area at a uniformly random location between two
individuals. The size of the rectangle, called crossover size in our
case, is specified by its height and width in form of integers
chosen uniformly at random in the range [1, 30] which is called
crossover range in this paper. Crossovers are performed on a
single channel, chosen randomly.

Finally, the individuals from the elite, together with these
crossed-over individuals, form the population P(t +1) of the new
generation.

These steps (evaluation, selection, mutation, cross-overs) are
repeated generation for generation until the termination condi-
tion is satisfied.

–The time complexity of the algorithm: The time complexity
of evolutionary algorithms is commonly measured through the
number of generations or evaluations of the fitness function.
Factors such as the population size and the intricacy of the fitness
function can also impact the complexity. The time complexity of
these algorithms can vary, potentially being exponential, polyno-
mial, or even constant, depending on the specific problem and
implementation [24]. Our algorithm has a time complexity of
O(ngm), where n is the size of the input (i.e. 224 × 224 × 3 for
ImageNet images), g is the number of generations, and m is the
population size. The size of the input image greatly impacts the
computation time of our algorithm.

For future references (Sections 4 and 5), note that even if
the algorithm focuses on achieving τ -strong adversarial images,
on the way one may store intermediate relevant information
regarding the occurrences where the algorithm already produces
good enough adversarial images, or even adversarial images for the
untargeted attack.

3.2. Population and crossover sizes: tests design

In this subsection, we design a series of tests for EAtarget,C with
different population and crossover sizes.

The choice of population and crossover sizes can have a signif-
icant impact on the performance of an evolutionary algorithm. In
general, a larger population size can lead to a greater diversity of
solutions, which can help to prevent the algorithm from getting
stuck in a local optimum. However, a larger population size also
requires more computation time and memory, and so there is
often a trade-off between population size and computational
4

efficiency. A larger crossover size typically results in greater ex-
ploration of the search space, which can help the algorithm to
escape from local optima. However, a larger crossover size also
increases the chance of introducing undesirable genetic mate-
rial into the population, which can lead to a decrease in the
overall quality of the population [25]. The optimal population
and crossover sizes may be different for different problem, so, it
requires some trial and error to find the best values for population
and crossover sizes.

Indeed, in [10,17], we constructed an EA (a variant of EAtarget,C)
that successfully fooled VGG-16 trained on the CIFAR-10 dataset.
Starting with ancestor images of size 32 × 32, we found that N =

160 and the crossover range [1, 10] provide the best trade-off
between the effective construction of adversarial images on the
one hand, and the computational time and number of generations
required to do so on the other.

The situation differs here because we attack CNNs trained
on the ImageNet dataset. The ancestor images are now of size
224 × 224 (usually; they are sometimes even larger before being
processed to fit the CNNs’ constraints). Said otherwise, starting
with ancestor images of ImageNet size, EAtarget,C must deal with
a search space that is 49 times larger than the search space for
images of CIFAR-10 size. Therefore, finding the balance between
achieving the goal of the construction of convenient adversarial
images and the time and number of generations required to do
so requires adjusting the population size and crossover size of the
EA accordingly.

To find the optimal population size Nopt and crossover range
for the threshold value τ = 0.75 and the maximum number
of generations X = 10,000 (the choices of τ and X are consis-
tent with the experiments performed in Section 5), we first run
EAtarget,C with N = 40, 80, 120, and 160 for C =VGG-16 trained
on the ImageNet dataset for a series of combinations (ca, ct ) with
fixed crossover range [0, 30] and find Nopt . Then we performed
the same experiment with different crossover ranges: [0, 10], [0,
20], [0, 30], [0, 56], and [0, 112] with Nopt .

More precisely, we randomly choose 5 pairs (cak , ctk ) (1 ≤ k ≤

) of ancestor and target categories, and pick an ancestor image
ak in cak (see Table 1). To increase the robustness of the results,
e perform 10 independent runs for each population size with
andom seeds, and assess the average, over these 10 runs for each
opulation size N , of significant indicators: average time in sec-
nds, average number of generations, average time/generation,
nd average L2-distance between the ancestor image and the
dversarial images. Then we repeat the same experiments for
ach crossover range. Computations were performed on nodes
ith Nvidia Tesla V100 GPGPUs of the IRIS HPC Cluster at the
niversity of Luxembourg [26].

.3. Population size tuning: results and interpretation

Table 2 summarizes the results of the tests of Section 3.2.
xperiments show that all runs successfully created 0.75-strong
dversarial images in less than 6000 generations. Therefore, to
e on the safe side in the experiments performed in this pa-
er, we set the maximum number of generations to 10,000 (see
ection 5).
Table 3 illustrates the quality of the adversarial images ob-

ained by our algorithm. The first image (from the left) is the
ncestor image Aa1 , the others are 0.75-strong adversarial images
reated by our EA with a population size N = 40, 80, 120 and
60. For N = 40, 80, and 120, the worst adversarial image (from
L2 perspective) of the 10 independent runs is pictured, and,

or N = 160, the best (still from a L2-distance perspective) ad-
ersarial image is represented. The outcome is clear: a human is
nlikely to notice any difference between any of these adversarial
mages and the ancestor image.



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

i

s

1
i

u
c
(
8
w
s
g

3

E
a

e
i
E
a

r
C
t
a
a

4

a
v
S

Table 1
For 1 ≤ k ≤ 5, the ancestor image Aak , taken from the ImageNet test set, classified by VGG-16 in the
category cak , with its corresponding cak -label value. The last row indicates the chosen target category ctk .
Table 2
Performance comparison of EAtarget,C for C = VGG-16 trained on ImageNet
n creating 0.75-strong adversarial images for the target scenario (cak , ctk )
performed on Aak , with different population sizes. The results are the average
of the 5 pairs of Table 1 over 10 independent runs for each population size.
N avgTime0.75VGG16 avgGens0.75VGG16 Time/gen avg0.75VGG16L2
40 840 s 2957 0.283 3220
80 1747 s 2551 0.686 3091
120 2434 s 2355 1.039 3029
160 3095 s 2256 1.382 2983

Since there is no humanly visual difference between adver-
arial images obtained with a population size N = 40, 80, 120 or
N = 160, and since, moreover, the measures of the L2-distances
between the ancestor image and the adversarial images obtained
with a population size of N = 40 versus a population size N =

60 remain very close (differing by only 8%), what really matters
s the speed in creating the adversarial images.

With the machines and libraries specified in Section 5 (and
sed for all experiments in this study), the algorithm with N = 40
ompletes a generation in 0.283 s on average, almost five times
exactly 4.88) faster than with N = 160, and terminates within
40 s on average; hence, it is more than 3.68 times faster than
ith N = 160. This speed gain (per generation and altogether)
ignificantly compensates for the 31% increase in the number of
enerations required with N = 40 as compared with N = 160.

.4. Crossover size tuning: results and interpretation

Table 4 summarizes the results of the tests of Section 3.2.
xperiments show that all runs successfully created 0.75-strong
dversarial images in less than 6000 generations.
The findings demonstrate that the effectiveness of EAtarget,C is

nhanced when the crossover range is set to [0,30]. However,
t should be noted that the impact of the crossover range on
Atarget,C ’s performance is minimal, as the number of generations,
verage time (avgTime), and L2-distances are relatively similar.
Conclusion.— A population size of N = 40 and crossover

ange of [0, 30] provide an appropriate choice for EAtarget,C against
= VGG-16 trained on ImageNet. We more generally extrapolate

hese choices of N = 40 and crossover range [0, 30] for EAtarget,C

gainst any CNN trained on ImageNet. Therefore, we use N = 40
nd crossover range [0, 30] throughout the rest of this paper.

. One EA versus 10 CNNs: Methodology

The generic methodology used in our EA-based attack against
series of trained CNNs is described in this section. This pro-
ides the theoretical ground for the experiments performed in
ection 5, which concretely evaluates the efficiency of EAtarget,C
5

at generating adversarial images against the 10 CNNs trained on
ImageNet (0.75-strong adversarial images or good enough adver-
sarial images for the target scenario, or adversarial images for the
untargeted scenario) within 10,000 generations.

Specifically, Section 4.1 lists the 10 CNNs trained on ImageNet
that we intend to challenge with our EA, and provides the ra-
tionale that led to their choice. Section 4.2 explains how we
obtained the (ancestor, target) category pairs, and the ancestor
images. Section 4.3 describes how we intend to run EAtarget,C on
a significant number of cases for each specific CNN C, and defines
the indicators that assess the effectiveness and quality of this
EA-based attack, mainly for the target scenario, but also for the
untargeted scenario.

4.1. Network domain

We challenge EAtarget,C against the following 10 CNNs trained
on ImageNet: C1 = DenseNet121 [3], C2 = DenseNet169 [3], C3 =

DenseNet201 [3], C4 = MobileNet [27], C5 = NASNetMobile [28],
C6 = ResNet50 [5], C7 = ResNet101 [5], C8 = ResNet152 [5], C9 =

VGG16 [4], and C10 = VGG19 [4].
These 10 CNNs were chosen for the following reasons: First,

due to implementation considerations, we only considered CNNs
that have an ImageNet pre-trained version already available in
Keras [29]. To date, 26 CNNs satisfy this criterion. They are listed
in Table 5.

Out of them, 15 handle images of size 224 × 224, while
11 handle images of larger sizes, varying from 240 × 240 to
600 × 600.

From this list, we only considered CNNs whose implemen-
tation is stable. These considerations led us to disregard the
EfficientNetB family altogether in the present study, since these
CNNs are only available in the nightly build tensorflow of Keras.
Lastly, being able to compare the behavior of the CNNs once
exposed to EAtarget,C led us to restrict this study to CNNs handling
images of size 224 × 224. This comparison criterion leaves a
group of 14 CNNs (all CNNs handling images of size 224 × 224
except EfficientNetB0; note furthermore that the other members
of the EfficientNetB family handle images of larger size).

These 14 CNNs are composed of a group of 10 CNNs with
different characteristics, and of a group of 4 CNNs that are vari-
ants of those 10. The study is therefore limited to the group of
10 stable CNNs, which, on the one hand, handle images of equal
sizes (224 × 224) and, on the other hand, provide the maximal
diversity in terms of characteristics and features, as illustrated
in Table 6. In particular, the 3rd column provides the number of
parameters of each CNN (in millions).

The performance of the CNNs is presented in terms of Top-
1 and Top-5 accuracies (in the last two columns) for the target
scenario. Recall that a CNN’s classification satisfies the Top-1



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

i

V

4

a
t
c
c
t

Table 3
0.75-strong adversarial images created by EAtarget,C for C = VGG-16 trained on ImageNet, with
different population sizes of N = 40, 80, 120, and 160.
Table 4
Performance comparison of EAtarget,C for C = VGG-16 trained on ImageNet
n creating 0.75-strong adversarial images for the target scenario (cak , ctk )
performed on Aak , with different crossover ranges. The results are the average
of the 5 pairs of Table 1 over 10 independent runs for each crossover range.
Range avgTime0.75VGG16 avgGens0.75VGG16 Time/gen avg0.75VGG16L2
10 889 s 2970 0.300 s 3221
20 895 s 3038 0.296 s 3454
30 840 s 2957 0.283 s 3220
56 947 s 3017 0.319 s 3231
112 928 s 2963 0.307 s 3211

(respectively Top-5) accuracy if the target label category exactly
matches the model’s prediction (respectively is one of the five
best model’s predictions). Based on Top-1 and Top-5 accuracy,
DenseNet201 (C3) has the best performance, while VGG-16 (C9),
GG-19 (C10), and MobileNet (C4) have the worst performance.

.2. Image domain

We randomly take 10 pairs (caq , ctq ) of distinct categories
mong the 1000 categories of ImageNet. For 1 ≤ q ≤ 10,
he first component caq is the ancestor category, and the second
omponent ctq is the target category. Then, for each ancestor
ategory, we randomly take 10 distinct images A1

q, . . . ,A
10
q from

he ImageNet validation set for the specific category caq . This
process leads to 100 ancestor images Ap

q altogether, namely, 10
for each of the 10 ancestor categories.

Table 7 specifies the ancestor categories and the target cat-
egories obtained that way. In Appendix A, Fig. A.5 shows the
100 selected ancestor images, and Table A.11 gives their caq-label
values for the 10 CNNs. The CNNs classify the ancestor images
in the correct caq category in almost 97% cases (966 out of 1000
possibilities; the remaining 34 cases are classified in a different
category since the caq-label value given by the corresponding CNN
is not dominant among all categories).

4.3. Experiments and indicators

For a threshold value τ and a bound X of the number of gen-
erations, to be specified in the concrete experiments performed
in Section 5, we run EAtarget,C for each C = Ck (for 1 ≤ k ≤ 10)
on each ancestor Ap

q (for 1 ≤ q ≤ 10, 1 ≤ p ≤ 10). We there-
fore perform 100 attacks per CNN, aiming at creating, within X
generations, τ -strong adversarial images Dk(A

p
q) = EAtarget,Ck (Ap

q)
for the target scenario (caq , ctq ) with the ancestor image Ap

q from
the ancestor category caq . We consider that running each of
these altogether 1000 attacks (100 attacks per CNN × 10 CNNs)
with one seed value is enough to make the point regarding the
efficiency of our attack.

Various metrics are used to assess the effectiveness and qual-
ity of our target (but also untargeted) attacks against each CNN.

Potential biases are due, for instance, to the specific choice of an

6

ancestor–target pair, of a specific ancestor image, of a specific
seed value in running the EA, etc. To reduce such potential issues,
we focus on the mean behavior of the attack. Therefore, these
metrics are (for most of them) averaged on the 100 attacks
performed per CNN. In other words, these metrics aggregate for
each CNN the outcomes of the attacks on the 10 ancestors per
ancestor category × the 10 pairs of (ancestor, target) categories.

This leads us to define three success rates, SRτ
C , SRge

C , and
SRuntarg

C for a CNN C, with the former two dealing with the target
attack and the latter with the untargeted attack.

The τ -Success Rate SRτ
C is the percentage of runs of EAtarget,C

that successfully created at least one τ -strong adversarial image
within X generations. The good enough Success Rate SRge

C is the
percentage of runs of EAtarget,C that successfully created at least
one good enough adversarial image within X generations, while
the EA was aiming at constructing τ -strong adversarial images.
Finally, the untargeted Success Rate SRuntarg

C is the percentage of
runs of EAtarget,C that successfully created at least one adversarial
image for the untargeted attack within X generations, while the
EA was aiming at constructing τ -strong adversarial images. In
this latter case, however, one only considers runs performed on
ancestor images that are classified in the ancestor category by
the CNN (although rarely, it indeed happens that a CNN does
not classify some ancestor images in the correct category despite
being chosen from the validation set (see Table A.11)). As already
indicated at the end of Section 3.1, one collects some relevant
information regarding the production of good enough adversarial
images or adversarial images for an untargeted attack on the way
toward the creation of τ -strong adversarial images. Note that the
fitness function defined by Eq. (4) was not designed to focus on
an untargeted attack. Therefore, the outcome for the untargeted
attack can be perceived as a by-product of the targeted attack.
The inequalities SRτ

C ≤ SRge
C ≤ SRuntarg

C generally hold (the first
inequality does hold systematically, and the second one usually
holds).

With notations consistent with Section 3.2, for each CNN we
measure the average number of generations (avgGensallC ) and
the average time (avgTimeallC , in seconds) required by all at-
tacks (successful or not). We then define similar quantities, but
restricted to targeted attacks that either successfully create at
least one τ -strong adversarial image within X generations (lead-
ing to avgGensτC , avgTimeτ

C), or successfully create at least one
good enough adversarial image within X generations (leading to
avgGensgeC , avgTimegeC ). Mutatis mutandis, we also consider the
consistently defined quantities avgGensuntargC and avgTimeuntargC for
successful untargeted attacks.

For each CNN, we also report average L2-distances that assess
the visual quality of adversarial images obtained by successful
attacks. For the target scenario, on the one hand, avgτ

CL2 is the
average of the L2 distances between the ancestor image and the
τ -strong adversarial images created by the EA. On the other hand,
avggeC L2 is the average of the L2 distances between the ancestor
image and the good enough adversarial images created by the
EA. For the untargeted scenario, one defines in a similar way



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

i
a

c
e

5

r
r
E
1
l
T
L

a

u
S
f
t

5

C
T
t
n

a
i
E
f

Table 5
List of all CNNs with ImageNet pre-trained versions available in Keras.
CNN Image size CNN Image size CNN Image size

DenseNet121 (C1) 224 × 224 MobileNetV2 (see C4) 224 × 224 Xception 299 × 299
DenseNet169 (C2) 224 × 224 ResNet50V2 (see C6) 224 × 224 InceptionV3 299 × 299
DenseNet201 (C3) 224 × 224 ResNet101V2 (see C7) 224 × 224 InceptionResNetV2 299 × 299
MobileNet (C4) 224 × 224 ResNet152V2 (see C8) 224 × 224 NASNetLarge 331 × 331
NASNetMobile (C5) 224 × 224 EfficientNetB0 224 × 224
ResNet50 (C6) 224 × 224 EfficientNetB1 240 × 240
ResNet101 (C7) 224 × 224 EfficientNetB2 260 × 260
ResNet152 (C8) 224 × 224 EfficientNetB3 300 × 300
VGG-16 (C9) 224 × 224 EfficientNetB4 380 × 380
VGG19 (C10) 224 × 224 EfficientNetB5 456 × 456

EfficientNetB6 528 × 528
EfficientNetB7 600 × 600
E
E
t
i
a
E
o

F
o
t
0

c
0
s
g
a
o
T
v

5

i
a

(
s
e
1

t
m
c
r
a

a
t
r
D
d
A
i
r
1
t

e

Table 6
The 10 CNNs trained on ImageNet, their number of parameters (in millions) and
their Top-1 and Top-5 accuracy.
Ck Name of the CNN Parameters Top-1 accuracy Top-5 accuracy

C1 DenseNet121 8M 0.750 0.923
C2 DenseNet169 14M 0.762 0.932
C3 DenseNet201 20M 0.773 0.936
C4 MobileNet 4M 0.704 0.895
C5 NASNetMobile 4M 0.744 0.919
C6 ResNet50 26M 0.749 0.921
C7 ResNet101 45M 0.764 0.928
C8 ResNet152 60M 0.766 0.931
C9 VGG16 138M 0.713 0.901
C10 VGG19 144M 0.713 0.900

avguntargC L2 as the average of the L2-distance between the ancestor
mage and the first adversarial image that is no longer classified
s belonging to the ancestor category.
This series of indicators contributes to the assessment of the

onvergence characteristics of EAtarget,C
L2

for each of the 10 consid-
red CNNs.

. One EA versus 10 CNNs: Results

The methodology described in Section 4 is applied with pa-
ameter values τ = 0.75 and X = 10,000. For the experiments
eported in the present section (and in Section 3), the algorithm
Atarget,C was implemented using Python 3.7 [30] with NumPy
.17 [31], TensorFlow 2.1 [32], Keras 2.2 [29], and Scikit 0.24 [33]
ibraries. Computations were performed on nodes with Nvidia
esla V100 GPGPUs of the IRIS HPC Cluster at the University of
uxembourg [26].
Section 5.1 summarizes the outcomes of these experiments,

nd their interpretation is provided in Section 5.2.
The notations used in this section are consistent with those

sed in Section 4, especially regarding the indicators defined in
ection 4.3, given of course for τ = 0.75 and X = 10,000 (or
or increasing values of the maximal number of generations up
o 10,000 (see Table B.12 in Appendix B)).

.1. Experimental results

Table 8 gives the respective performance of our EA for each
NN, for the chosen parameters τ = 0.75 and X = 10,000.
he indicators are averaged over the 100 attacks per CNN, and
he Table is sorted according to growing values of the average
umber of generations avgGens0.75C required by EAtarget,C .
Table 9 gives the success rates of our attack against each CNN,

nd is sorted according to decreasing values of SR0.75
C . Table B.12

n Appendix B details the progression of the success rates of
Atarget,C as the maximum number X of generations increases
rom 1000 to 10,000.
7

Finally, Fig. 2 shows the convergence characteristics of
Atarget,C for each CNN. In a sense, each curve shows how fast
Atarget,C improves the target category label value towards 0.75
hroughout running generations. The running generation number
s given on the horizontal axis, and the vertical axis gives the
verage of the ct-label values over 100 attacks for this generation.
ach of the 10 curves is the result of the average runs of EAtarget,C

ver 100 attacks performed against C = Ck for 1 ≤ k ≤ 10.
Let us use the example of MobileNet = C4 to explain how

ig. 2 should be understood while taking into account the values
f avgGensallC of Table 8, which includes all attacks (including
hose that stopped at 10,000 generations without creating any
.75-strong adversarial image).
For MobileNet, avgGensallC4

= 2201 while the convergence
haracteristics of EAtarget,C4 give an average target probability of
.2604 after 2201 generations. Indeed, out of the 100 attacks, 66
uccessively created a 0.75-strong adversarial image in ≤ 2201
enerations, 33 required more than 2201 generations to do so,
nd 1 terminated without success. In particular, the ct-label value
f these 34 latter cases remained small for the 2201th generation.
his explains why altogether one obtains an average ct-label
alue of 0.2604 at generation 2201.

.2. Interpretation

Let us analyze the success rates of EAtarget,C , the speed at which
t creates adversarial images, and assess the visual quality of
dversarial images.
Success rate of EAtarget,C .— With average success rates ≥ 92.8

regardless of the success rate considered, SR0.75
C , SRge

C , or SRuntarg
C ,

ee Table 9), the experiments clearly prove that EAtarget,C is highly
fficient against all 10 challenged CNNs, at least when X =

0,000.
Table B.12 (Appendix B) completes the study by showing

hat EAtarget,C is already very efficient for lower values of the
aximum number X of generations taken for the termination
ondition. For instance, the algorithm achieves average success
ates (all CNNs considered, whichever the success rate) ≥ 76%
lready for X = 5000.
Obviously, the success rate of EAtarget,C varies with C. The

lgorithm EAtarget,C with X = 10,000 (see Table 9) proves par-
icularly efficient against VGG-16 and MobileNet, with success
ates ≥ 99%, and is less efficient against NASNetMobile and
enseNet-201, with success rates ≥ 80%. The situation is slightly
ifferent if one restricts X to X = 5, 000. In this case (Table B.12,
ppendix B), MobileNet remains the most vulnerable (97%), but
s followed by ResNet-50 (82%) this time, whereas the most
esistant CNN is still NASNetMobile (58%), but followed by VGG-
9 (71%) this time, where the percentages given in brackets are
hose of SR0.75

C (the others are higher).
Note that the number of parameters of a CNN does not alone

xplain its resistance against our attack, since the two ‘‘extremes’’



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

3

g

C

b
a

Table 7
For 1 ≤ q ≤ 10, the 2nd row gives the ancestor category caq and its index number aq among the categories of ImageNet (Mutatis mutandis for the target categories,
rd row).
q 1 2 3 4 5 6 7 8 9 10

caq
aq

abacus
398

acorn
988

baseball
429

broom
462

brown bear
294

canoe
472

hippopotamus
344

llama
355

maraca
641

mountain bike
671

ctq
tq

bannister
421

rhinoceros beetle
306

ladle
618

dingo
273

pirate
724

Saluki
176

trifle
927

agama
42

conch
112

strainer
828
Table 8
Performance comparison of EAtarget,C against each CNN, for τ = 0.75 and X = 10, 000. Results are averaged over the 100 attacks, and given in terms of number of
enerations, time, and L2-distance between the ancestor and the adversarial images.

CNNs avgGensallC avgGens0.75C avgGensgeC avgGensuntargC avgTime0.75C avgTimegeC avgTimeuntargC avg0.75C L2 avggeC L2 avguntargC L2
C4 MobileNet 2201 2122 1662 1503 562 440 398 2461 2225 2079
C7 ResNet-101 3428 3154 2586 2550 1285 842 659 3002 2716 2377
C2 DenseNet-169 3786 3172 2434 2329 1198 919 879 2601 2295 2179
C3 DenseNet-201 4232 3293 2736 2410 1348 1119 984 2962 2580 2433
C8 ResNet-152 4054 3466 2985 2385 1246 1073 930 3128 2882 2607
C1 DenseNet-121 3999 3477 2459 2081 1192 841 712 2801 2450 2214
C6 ResNet-50 3794 3535 2839 2050 1452 1166 979 3233 2891 2577
C9 VGG-16 3954 3893 2999 2006 1254 965 644 3892 3429 2715
C5 NASNetMobile 5148 3935 3231 2495 1426 1170 902 3214 2882 2485
C10 VGG-19 4244 4126 3188 2019 1370 1060 675 4024 3548 2699

Average 3884 3417 2712 2183 1233 960 776 3132 2790 2436
Fig. 2. Convergence characteristics of EAtarget,C for each CNN. Each of the 10 curves is the result of the average runs of EAtarget,C over 100 attacks performed against
= Ck for 1 ≤ k ≤ 10.
i
g
t

s

MobileNet and NASNetMobile both have 4M parameters (Ta-
ble 6), and since a CNN with a large number of parameters,
VGG16, is more exposed to our attack than another with sig-
nificantly less parameters, namely DenseNet201. However, CNNs
with a lower Top-1 and Top-5 accuracy appear, in general, easier
to fool than those with higher accuracy (although NASNetMobile
seems different in this regard). Our experiments indicate an ap-
parent correlation between Top-1 and Top-5 accuracy on the one
hand, and relative resistance to our attack on the other hand. We
do not state any strict causality from one phenomenon to the
other, though.

Speed at creating adversarial images.— Table 8 (completed
y Table B.12 in Appendix B) shows that these success rates are
chieved between 2122 generations on average for the fastest
8

CNN to fool, and 4126 generations for the most resistant CNN, and
an overall average of 3417 generations for a CNN from the list.
Moreover, the ‘‘additional effort’’, measured in terms of additional
generations required to move from good enough to 0.75-strong
adversarial images, is 25, 72%, and it is of 24, 50% to move from
adversarial for the untargeted scenario to good enough for a CNN
in general. Said otherwise, on the way to a successful creation of
0.75-strong adversarial images for a given CNN, the first 56% of
the total amount of generations are used to create an adversarial
mage for the untargeted scenario, about 74% are used to create a
ood enough adversarial image, and the remaining 26% are used
o achieve the set goal.

In terms of the average computational time (on the hardware
pecified at the beginning of this section), roughly 13 min are



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

a

b
a
s

p
a
a
F
i
V
M
a
o
p
a
e
3
i
m
i
g
e
a
t
u
i

6
a

c
L

i
f
i
v

X

Table 9
Success rates of EAtarget,C for each CNN, for τ = 0.75 and X = 10, 000.

CNNs SR0.75
C SRge

C SRuntarg
C

C9 VGG-16 99 100 100
C4 MobileNet 99 99 99
C10 VGG-19 98 100 100
C6 ResNet-50 96 99 99
C8 ResNet-152 96 99 99
C1 DenseNet-121 92 95 95
C7 ResNet-101 91 98 98
C2 DenseNet-169 91 96 97
C3 DenseNet-201 86 96 96
C5 NASNetMobile 80 86 87

Average 92.8 96.8 97.0

necessary to create an adversarial image for the untargeted sce-
nario, 16 min for a good enough adversarial image, and 20 min for
0.75-strong adversarial image.
As shown in Fig. 2, the learning curve of EAtarget,C differs

substantially from one CNN to another. The fastest learning curve
(in the short- to mid-term) is achieved for MobileNet (C4), and the
slowest (in the mid- to long term) is achieved for NasNetMobile
(C5). Although the learning curves start very modestly for VGG16
and VGG19 (C9, C10) since the EA’s learning curves for these two
are the slowest (hence even slower than for C5) until circa the
3000th-generation, their slopes sharply improve afterwords, and
outperform the others from the ≃ 7000th-generation onward.

Visual quality of the adversarial images.— In terms of the L2-
distance between adversarial and ancestor images, if one takes
the value 2436 as a reference point, obtained as the average
L2-distance between such images for the untargeted scenario (Ta-
le 8), the average divergence from this value for a good enough
dversarial image is +14%, and is +28% for a 0.75-strong adver-
arial image.

Beyond these numerical measures, we actually claim that the
erturbations added by EAtarget,C to create adversarial images for
ny of the tested CNNs are unnoticeable to a human eye (at least
ccording to those of the authors of this paper). For instance,
ig. 3 compares an ancestor image and the obtained adversarial
mages (modulo resizing) for the most difficult CNNs, namely
GG-19 and NasNetMobile (C10, C5), and the easiest CNNs, namely
obileNet and ResNet-101 (C4, C7), as assessed by the values of
vgGens0.75C in Table 8. More precisely, the image on the left
f Fig. 3 is A10

8 , the ancestor image in the llama category c355
ictured in Fig. A.5 in Appendix A. Performing EAtarget,C on this
ncestor image for the (llama, agama) ancestor–target pair for
ach of these CNNs with τ = 0.75 and X = 10,000 leads to the
groups of adversarial images pictured on Fig. 3. The 1st group

s composed of the first obtained 0.75-strong adversarial images,
utatis mutandis the 2nd group with good enough adversarial

mages, and the 3rd group with adversarial images for the untar-
eted scenario. These experiments provide evidence that a human
ye is unlikely to notice any difference between these images,
fortiori, between any of the obtained adversarial images and

he ancestor image. The rest of the 0.75-strong, good-enough, and
ntargeted adversarial images produced by our attack are shown
n Appendix B, Fig. B.6, Fig. B.7, and Fig. B.8 respectively.

. Comparison of our EA-based attack with six well-known
ttacks

In order to demonstrate the effectiveness of EAtarget,C , we
ompare it with 6 well-known attacks: FGSM, BIM, PGD Inf, PGD
2, SimBA, and AdvGAN.
9

6.1. Summary of the attacks

–Fast Gradient Sign Method (FGSM) [34], a white-box attack,
s a one-step algorithm that utilizes the gradient of the loss
unction J(X,y) with respect to input X to determine the direction
n which the original input X should be modified. In its untargeted
ersion, the adversarial image is
adv

= X + ϵsign(∆X J(X, ca)), (5)

while in its targeted version it is

Xadv
= X − ϵsign(∆X J(X, ct )). (6)

where ϵ is the perturbation size which is calculated with Linf
norm and ∆ is the gradient function. We set eps_step = 0.01 and
ϵ = 8/255.

–Basic Iterative Method (BIM) [35], a white-box attack, is an
iterative version of FGSM, since Xadv is initialized with X and is
gradually updated for a given number of steps N , as follows:

Xadv
ℓ+1 = Clipϵ{Xadv

ℓ + αsign(∆A(JC(Xadv
ℓ , ca)))} (7)

in its untargeted version and

Xadv
ℓ+1 = Clipϵ{Xadv

ℓ − αsign(∆A(JC(Xadv
ℓ , ct )))}, (8)

in its targeted version, where α is the step size at each iteration
and ϵ is the maximum perturbation magnitude of Xadv

= Xadv
N .

We use the eps_step = 0.01, max_iter = int(eps × 256 × 1.25),
and ϵ = 2/255.

–Projected Gradient Descent Infinite (PGD Inf) [36], a white-
box attack, is similar to the BIM attack, with the difference that
the image at the first attack iteration is not initialized with X , but
rather with a random point situated within an Lp-ball around X .
The distance between X and Xadv is measured using Linf norm.
We set norm = inf, eps_step = 0.01, batch_size = 1, and the
maximum perturbation magnitude ϵ = 8/255.

–Projected Gradient Descent L2 (PGD L2) [36], a white-box at-
tack, is similar to PGD Inf, with the difference that Linf is replaced
with L2. We set norm = 2, eps_step = 0.1, batch_size = 1, and
ϵ = 2.

–Simple Black-box Attack (SimBA) [37], a black-box/white-
box attack, is a simple and efficient algorithm that randomly
samples a vector from a predefined orthonormal basis and either
adds or subtracts it to the target image. It can be used for both
targeted and untargeted attacks. We set the overshoot parameter
epsilon to 0.2, batch_size to 1, and the maximum number of
generations to 10000 for both targeted and untargeted attacks
and use the attack in the black-box setting.

–Adversarial GAN attack (AdvGAN) [38], a black-box/semi-
whitebox attack, uses generative adversarial network (GAN) to
generate adversarial images. AdvGAN consists of three main
parts: a generator, a discriminator, and the target neural network.
The generator in AdvGAN is trained to produce perturbation
which will result in adversarial images when it is added to the
original images. The discriminator’s goal is to be sure that the
generated adversarial image is indistinguishable from the original
image. We set the Linf perturbation bound to 0.01 and use the
attack in the black-box setting.

6.2. Tests design

FGSM, BIM, PGD Inf, PGD L2, and SimBA are imported from
the Adversarial Robustness Toolbox (ART) [39] which is a Python
library that includes several attack methods. AdvGAN is imple-
mented from its original paper [38] for the CNNs trained with the
ImageNet dataset and verified with similar implementations [40,
41]. Default settings of FGSM, BIM, PGD Inf, PGD L2, and SimBA
in the Adversarial Robustness Toolbox (ART) [39] are used in



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397
Fig. 3. Visual comparison of ancestor and adversarial images obtained by EAtarget,C for C = VGG-19, NASNetMobile, MobileNet, and ResNet-101 (C = C10, C5, C4, C7),
for the (llama, agama) ancestor–target pair and the ancestor image A10

8 taken from Fig. A.5 in Appendix A.
F
i
l
e
a

our experiments. AdvGAN parameters are taken from its original
paper.

Due to the varied techniques and constraints utilized in these
attacks, determining metrics for comparing their performances
can prove challenging. For instance, measuring the number of
generations is an appropriate metric for evolutionary algorithm-
based attacks like EA and SimBA, but it is not relevant for
gradient-based attacks like FGSM, PGD, and BIM. So, to assess the
effectiveness of these methods, we focused specifically on generic
metrics such as success rate and visual quality as evaluation
criteria.

The attacks are performed using the same ancestor/target
pairs against the 10 CNNs described in Sections 5.1 and 5.2 for
targeted and untargeted scenarios. So each attack attempts to
generate around 1000 adversarial images in both targeted and
untargeted attacks.

6.3. Results

We summarize here the qualitative and quantitative results of
our experiments.

Success rate comparison : Table 10 summarizes the attacks’
parameters and compares the attacks’ performance in terms of
success rates for both targeted and untargeted scenarios. SimBA
and FGSM perform poorly in generating adversarial images in
the targeted scenario. Although SimBA’s epsilon value is doubled
from its default setting, it does not succeed in the targeted sce-
nario within 10000 generations. As mentioned in [37], SimBA
performs better for small-size images as in Cifar10 or MNIST.
When it comes to higher-resolution images, SimBA needs more
generations (>10 000) to converge into the target category. Nev-
ertheless, SimBA managed to move the majority of the ancestor
10
images from their true class to some other classes with a success
rate of 84.9%. As with SimBA, FGSM performs better for the
untargeted scenario with a success rate of 77.1%, while it fails for
the targeted scenario.

PGD Inf and PGD L2 successfully generate adversarial images
in both scenarios with a success rate of over 85%. PGD Inf has the
best success rate among all attacks for the untargeted scenario
with 97.1%. BIM is the iterative version of FGSM. In our experi-
ments, we set the Linf bound for BIM at 2/255, which is four times
lower than what we used for FGSM. Despite this challenging
constraint, BIM still achieved a similar success rate to FGSM in
the untargeted scenario, and even outperformed FGSM in the
targeted scenario.

In regards to AdvGAN, we set the Linf value to 2.25/255 as
in its original paper. This resulted in a success rate of over 50%
for both scenarios. Through our experimentation, we observed
that increasing the Linf value significantly improves the success
rate of AdvGAN. In addition to Linf , the choice of the generator
and discriminator architecture has a substantial impact on the
performance of AdvGAN.

As seen in Table 10, our EA attack demonstrates exceptional
performance, with a success rate of 96.8%, outperforming the
results of all other white- and black-box attacks in the targeted
scenario. Although our attack is not specifically designed for
untargeted scenarios, it still ranks as the second most effective
among other attacks.

Qualitative results: For qualitative evaluation of our attack
ig. 4 presents the visual comparison of ancestor and adversarial
mages obtained by the attacks against VGG16 along with the
abel and label values. The perturbations added by FGSM can be
asily discerned. The subtle contrast change and noise pattern
dded to the original image by SimBA and BIM, respectively, can



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

a
i
E
(
a
a
b
h
h
t
m
s
t
a
s
t
r
E
a

C

V
C
i
v

D

c
t

D

A

A

Table 10
Performance comparison of attacks in terms of success rate for the untargeted and targeted scenarios.
Attacks FGSM PGD Inf PGD L2 BIM SimBA AdvGAN EA

Settings: Linf = 8/255 Linf = 8/255 L2 = 2 Linf = 2/255 max_gen = 10000 eps = 0.2 Linf = 2.25/255 max_gen = 10000

Untargeted Targeted Untargeted Targeted Untargeted Targeted Untargeted Targeted Untargeted Targeted Untargeted Targeted Untargeted Targeted

C1 DenseNet-121 82 4 99 98 98 73 57 36 91 0 67 64 95 95
C2 DenseNet-169 67 1 98 97 95 80 57 42 87 0 72 72 97 96
C3 DenseNet-201 66 2 98 96 95 75 49 34 83 0 54 52 96 96
C4 MobileNet 78 1 99 94 97 96 79 54 86 1 60 58 99 99
C5 NASNetMobile 52 1 95 52 96 67 52 14 74 0 57 51 87 86
C6 ResNet-50 85 1 99 100 98 99 93 88 88 0 64 61 99 99
C7 ResNet-101 84 0 98 100 97 98 90 80 88 0 58 56 98 98
C8 ResNet-152 77 4 95 99 89 99 85 80 78 0 53 51 99 99
C9 VGG-16 92 7 97 100 94 86 78 61 89 0 56 39 100 100
C10 VGG-19 88 3 93 100 91 86 71 54 85 0 39 25 100 100

Overall average 77.1 2.4 97.1 93.6 95 85.9 71.1 54.3 84.9 0.1 58 52.9 97 96.8
only be detected by an attentive observer who has previously
viewed the original image. The remaining attacks generated such
a disturbance in the original images that they are undetectable to
the human eye.

7. Conclusion

In this paper, we presented an evolutionary algorithm (EA) as
powerful black-box attack for CNNs trained on ImageNet for

mage classification tasks. We evaluated the performance of our
A-based attack against four commonly used white-box attacks
FGSM, PGD Inf, PGD L2, and BIM) and two other black-box
ttacks (SimBA and AdvGAN) on 10 stable CNNs with diverse
rchitectures. This paper not only describes an adversarial attack
ased on evolutionary algorithms but also provides a compre-
ensive evaluation of popular adversarial attacks on generating
igh-resolution (224 × 224) adversarial images. Our results show
hat the EA-based attack outperforms or is on par with these
ethods in both targeted and untargeted attacks. Our findings
uggest that our EA-based attack is the most successful attack for
he selected CNNs. Despite these positive outcomes, our EA-based
ttack can still be improved. Specifically, the algorithm demon-
trated a longer convergence time for larger images in reaching
he desired category. In contrast to traditional evolutionary algo-
ithms, the mutation process holds a vital role in our algorithm.
nhancing this process could enhance its capability to explore
nd achieve faster convergence toward the target category.

RediT authorship contribution statement

Ali Osman Topal: Conceptualization, Methodology, Software,
alidation, Writing – review & editing, Visualization. Raluca
hitic: Validation, Methodology. Franck Leprévost: Conceptual-
zation, Methodology, Investigation, Supervision, Writing – re-
iew & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix A. Ancestor images

See Table A.11 and Fig. A.5.

ppendix B. Adversarial images

See Table B.12 and Figs. B.6–B.8.
11
Fig. 4. A visual comparison of ancestor and adversarial images generated by
FGSM, PGD Inf, PGD L2, BIM, SimBA, AdvGAN, and EA, against the VGG16 model
is presented. The first image represents the original, unaltered image, while the
following images depict the adversarial images. Each adversarial image is labeled
with the name of the attack at the top, and the label and label values of the
VGG16 at the bottom.



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

c

Fig. A.5. The 100 ancestor images Ap
q used in the experiments. Ap

q pictured in the pth column and qth row (1 ≤ q, p ≤ 10) is randomly chosen from the ImageNet
validation set of the ancestor category caq specified on the left of the qth row.
Table A.11
For 1 ≤ p ≤ 10, the ancestor category caq -label values given by the 10 CNNs of the image Ap

q pictured in Fig. A.5. A label value in red indicates that the category
aq is not the dominant one.

CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

1 1.000 0.981 0.997 0.999 0.953 0.992 0.999 0.997 0.607 0.942
2 1.000 0.997 0.989 1.000 0.994 0.909 0.998 0.987 0.883 0.987
3 0.998 0.845 1.000 1.000 0.996 0.836 0.987 0.997 1.000 0.891
4 0.996 0.997 1.000 1.000 0.997 0.620 0.239 0.984 0.648 0.619
5 1.000 0.999 1.000 0.998 0.955 0.811 1.000 1.000 0.145 0.986
6 1.000 1.000 0.957 0.998 1.000 0.990 0.997 0.916 0.692 0.999
7 0.998 0.999 0.999 0.973 0.977 0.525 0.985 0.974 0.756 0.940
8 1.000 0.999 0.993 0.993 0.995 0.913 1.000 1.000 0.999 0.962
9 1.000 0.998 0.981 1.000 0.997 0.820 0.999 1.000 0.999 0.992

C1 DenseNet-121

10 1.000 0.996 1.000 0.999 0.995 0.923 0.999 0.886 0.572 0.870

1 0.998 0.978 1.000 0.999 0.997 0.997 0.997 0.999 0.952 0.873
2 1.000 0.999 0.998 0.992 0.782 0.764 0.998 0.999 0.995 0.861
3 1.000 0.998 0.999 1.000 0.999 0.880 1.000 0.994 1.000 0.977
4 0.990 0.996 1.000 1.000 1.000 0.549 0.553 0.981 0.900 0.973
5 1.000 1.000 1.000 0.994 1.000 0.915 1.000 0.994 0.530 0.997

(continued on next page)
12



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397
Table A.11 (continued).
CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

6 1.000 1.000 0.998 1.000 1.000 0.997 0.995 0.975 0.091 0.991
7 1.000 1.000 1.000 1.000 0.998 0.827 0.996 1.000 0.857 0.945
8 1.000 1.000 0.998 0.998 0.999 0.951 0.999 1.000 1.000 0.975
9 1.000 1.000 0.943 1.000 0.999 0.905 1.000 1.000 0.993 0.964

C2 DenseNet-169

10 1.000 1.000 0.999 1.000 0.997 0.952 0.999 0.998 0.258 0.478
1 1.000 0.975 0.998 1.000 0.992 0.990 0.998 0.996 0.323 0.986
2 1.000 1.000 0.984 1.000 0.884 0.957 0.996 0.996 0.993 0.997
3 0.987 0.950 0.998 1.000 0.998 0.669 0.999 0.994 1.000 0.886
4 0.886 0.994 1.000 1.000 0.998 0.822 0.870 1.000 0.878 0.947
5 1.000 1.000 0.999 0.983 0.980 0.586 1.000 0.998 0.141 0.980
6 1.000 1.000 0.995 1.000 1.000 0.994 0.999 0.724 0.693 0.996
7 1.000 1.000 1.000 1.000 0.993 0.865 0.997 0.970 0.876 0.917
8 1.000 1.000 0.993 1.000 0.874 0.978 0.990 0.999 0.997 0.993
9 1.000 0.999 0.877 1.000 0.984 0.995 1.000 0.999 0.987 0.988

C3 DenseNet-201

10 0.996 1.000 0.998 0.999 0.978 0.984 0.987 0.963 0.253 0.983

1 0.999 0.994 1.000 0.995 0.999 0.999 0.998 0.954 0.329 0.938
2 0.994 0.936 0.993 0.998 0.972 0.620 0.991 0.914 0.946 0.631
3 1.000 0.979 1.000 1.000 1.000 0.825 1.000 0.999 1.000 0.947
4 1.000 0.999 1.000 0.998 0.999 0.826 0.758 1.000 0.762 0.966
5 1.000 0.984 1.000 0.955 0.997 0.944 1.000 0.944 0.906 0.978
6 1.000 1.000 1.000 0.992 1.000 0.961 0.992 0.589 0.645 0.862
7 0.999 0.998 1.000 0.989 0.996 0.812 0.264 1.000 0.999 0.729
8 1.000 1.000 1.000 0.632 0.997 0.952 0.997 1.000 0.809 0.998
9 1.000 0.991 0.915 0.997 0.997 0.989 1.000 1.000 0.525 0.988

C4 MobileNet

10 1.000 1.000 1.000 1.000 0.982 0.930 1.000 0.988 0.618 0.706

1 0.932 0.945 0.885 0.948 0.902 0.925 0.914 0.945 0.288 0.869
2 0.947 0.946 0.905 0.892 0.961 0.932 0.829 0.951 0.957 0.902
3 0.903 0.884 0.858 0.978 0.948 0.059 0.926 0.754 0.911 0.923
4 0.844 0.929 0.895 0.961 0.910 0.358 0.656 0.928 0.994 0.667

C5 NASNet Mobile 5 0.943 0.930 0.886 0.914 0.936 0.586 0.921 0.976 0.091 0.972
6 0.973 0.945 0.949 0.972 0.925 0.792 0.846 0.936 0.040 0.854
7 0.983 0.897 0.842 0.944 0.906 0.869 0.893 0.941 0.803 0.781
8 0.962 0.950 0.870 0.908 0.887 0.864 0.824 0.965 0.930 0.904
9 0.975 0.904 0.691 0.949 0.925 0.783 0.925 0.949 0.965 0.957
10 0.925 0.957 0.851 0.955 0.809 0.860 0.941 0.929 0.397 0.028
1 0.937 0.795 0.998 0.841 1.000 0.998 0.999 0.999 0.801 0.986
2 0.411 1.000 1.000 1.000 0.999 0.991 1.000 0.998 0.850 0.995
3 1.000 0.901 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.993
4 1.000 0.993 1.000 1.000 0.999 0.897 0.881 0.999 0.646 0.929
5 1.000 1.000 1.000 0.969 0.996 0.945 1.000 0.381 0.001 0.995
6 0.999 1.000 1.000 0.999 0.999 0.995 1.000 0.771 0.211 0.941
7 1.000 1.000 1.000 0.988 0.996 0.743 1.000 1.000 0.993 0.892
8 1.000 0.998 0.998 0.999 0.997 0.993 0.962 1.000 0.999 0.987
9 1.000 1.000 0.695 1.000 0.999 0.971 1.000 1.000 0.998 0.999

C6 ResNet-50

10 1.000 0.999 1.000 0.999 0.959 0.994 0.970 0.723 0.003 0.965

1 0.998 0.982 0.999 0.995 0.985 0.999 1.000 1.000 0.984 0.969
2 1.000 1.000 0.973 1.000 0.998 0.986 1.000 0.988 0.975 0.997
3 1.000 0.929 1.000 1.000 1.000 0.882 1.000 1.000 1.000 0.895
4 0.778 0.999 1.000 1.000 0.993 0.467 0.680 0.999 0.951 0.970
5 1.000 1.000 1.000 0.991 0.945 0.835 1.000 0.940 0.001 0.990
6 1.000 1.000 0.994 0.998 0.999 0.996 1.000 0.722 0.002 0.998
7 1.000 1.000 1.000 1.000 0.981 0.961 1.000 1.000 0.753 0.756
8 1.000 1.000 1.000 0.996 0.910 0.994 0.976 1.000 0.995 0.990
9 1.000 1.000 0.979 1.000 0.997 0.848 1.000 1.000 0.959 0.980

C7 ResNet-101

10 1.000 0.993 1.000 1.000 0.927 0.975 0.996 0.917 0.003 0.984

1 0.994 0.998 1.000 0.996 0.997 0.987 0.999 0.999 0.954 0.991
2 0.713 1.000 0.997 1.000 0.996 0.983 1.000 1.000 0.956 0.998
3 1.000 0.665 1.000 1.000 1.000 0.205 0.999 1.000 1.000 0.969
4 0.998 0.997 1.000 1.000 1.000 0.347 0.872 0.972 0.960 0.960
5 1.000 1.000 1.000 1.000 0.999 0.841 1.000 0.927 0.067 0.993
6 1.000 1.000 1.000 0.994 1.000 0.997 0.999 0.805 0.436 0.986
7 1.000 1.000 1.000 1.000 0.967 0.442 0.995 1.000 0.973 0.860
8 1.000 1.000 1.000 1.000 0.951 0.965 0.999 1.000 1.000 0.991
9 1.000 1.000 0.857 1.000 0.978 0.979 0.992 1.000 0.949 0.999

C8 ResNet-152

10 1.000 1.000 1.000 1.000 0.861 0.871 1.000 0.872 0.161 0.961

C9 VGG-16

1 1.000 0.392 1.000 0.272 0.991 0.990 0.999 0.940 0.112 0.862
2 0.952 0.997 1.000 0.918 0.472 0.918 1.000 0.968 0.683 0.979
3 0.998 0.688 1.000 1.000 1.000 0.896 1.000 1.000 1.000 0.952
4 0.996 0.999 1.000 0.993 0.998 0.764 0.214 0.999 0.259 0.740
5 1.000 0.999 1.000 0.913 0.997 0.678 1.000 0.918 0.090 0.936
6 1.000 1.000 0.674 0.972 0.999 0.883 1.000 0.828 0.027 0.952
7 0.999 0.998 0.999 0.999 0.995 0.595 0.935 1.000 0.018 0.640

(continued on next page)
13



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397
Table A.11 (continued).
CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

8 0.987 0.995 1.000 0.844 0.999 0.952 0.999 1.000 0.979 0.973
9 1.000 0.999 0.896 0.992 0.915 0.382 1.000 1.000 0.918 0.895
10 1.000 1.000 1.000 0.998 0.964 0.981 1.000 0.998 0.745 0.614

1 1.000 0.959 1.000 0.491 0.981 0.547 1.000 0.977 0.507 0.909
2 0.990 0.998 0.999 0.957 0.991 0.812 1.000 0.983 0.514 0.903
3 1.000 0.767 1.000 0.996 1.000 0.946 1.000 1.000 1.000 0.912
4 0.995 0.980 1.000 0.994 0.996 0.663 0.241 0.995 0.079 0.270
5 1.000 0.999 1.000 0.617 0.997 0.267 1.000 0.134 0.008 0.934
6 1.000 1.000 0.998 0.975 0.999 0.779 0.999 0.932 0.064 0.957
7 1.000 0.999 1.000 0.999 0.999 0.586 0.995 1.000 0.221 0.422
8 1.000 1.000 1.000 0.956 0.997 0.846 0.997 1.000 0.994 0.930
9 1.000 1.000 0.575 0.991 0.988 0.441 1.000 1.000 0.660 0.752

C10 VGG-19

10 1.000 1.000 1.000 1.000 0.993 0.859 0.999 0.966 0.731 0.862
Fig. B.6. Samples of 0.75-strong adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.
14



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

Fig. B.7. Samples of good enough adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.

15



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

Fig. B.8. Samples of untargeted adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.

16



A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397

R

Table B.12
Success rates of EAtarget,C for increasing values of X while τ = 0.75 for the
experiments designed in Section 4 and performed in Section 5.

X Su
cc
es
s
ra
te
s

C 1
-D

en
se
N
et
-1
21

C 2
-D

en
se
N
et
-1
69

C 3
-D

en
se
N
et
-2
01

C 4
-M

ob
ile

N
et

C 5
-N

AS
N
et
M
ob

ile

C 6
-R

es
N
et
-5
0

C 7
-R

es
N
et
-1
01

C 8
-R

es
N
et
-1
52

C 9
-V

G
G
-1
6

C 1
0-
VG

G
-1
9

Average

1000
SR0.75

C 5 1 2 10 4 2 1 2 2 2 3.1
SRge

C 10 9 7 23 7 12 4 7 4 2 8.5
SRuntarg

C 27 19 18 34 26 31 21 23 23 27 25.0

2000
SR0.75

C 19 27 19 57 15 26 26 19 15 12 23.5
SRge

C 45 48 34 71 28 39 35 37 27 29 39.3
SRuntarg

C 53 51 41 76 46 56 49 48 64 62 54.7

3000
SR0.75

C 47 53 40 85 33 50 43 46 35 31 46.3
SRge

C 70 75 69 89 47 68 62 59 57 51 64.7
SRuntarg

C 74 76 73 89 55 82 70 72 84 78 75.2

4000
SR0.75

C 66 71 64 90 46 73 61 61 58 50 64.0
SRge

C 83 82 82 97 61 87 80 83 77 72 80.4
SRuntarg

C 84 83 85 97 72 90 83 86 89 88 85.7

5000
SR0.75

C 74 77 74 97 58 82 75 79 75 71 76.2
SRge

C 87 90 84 97 73 92 88 91 91 88 88.1

SRuntarg
C 88 90 87 97 77 93 89 93 93 96 90.1

6000
SR0.75

C 82 81 80 98 66 89 83 87 86 82 83.4
SRge

C 92 91 89 98 76 94 92 92 95 94 91.3
SRuntarg

C 92 91 91 98 80 96 93 94 97 97 92.8

7000
SR0.75

C 84 86 84 98 72 93 86 90 93 89 87.5
SRge

C 93 92 92 98 81 96 92 95 98 97 93.4
SRuntarg

C 93 92 93 98 83 97 93 96 99 97 94.0

8000
SR0.75

C 88 88 85 98 73 94 89 92 97 94 89.8
SRge

C 95 95 93 99 81 97 92 97 99 99 94.7
SRuntarg

C 95 95 94 99 86 98 93 97 99 99 95.4

9000
SR0.75

C 90 90 86 98 78 95 91 94 98 97 91.7
SRge

C 95 96 95 99 85 98 96 98 100 100 96.2
SRuntarg

C 95 97 95 99 87 98 96 98 100 100 96.5

10000
SR0.75

C 92 91 86 99 80 96 91 96 99 98 92.8
SRge

C 95 96 96 99 86 99 98 99 100 100 96.8
SRuntarg

C 95 97 96 99 87 99 98 99 100 100 97.0

eferences

[1] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou,
Training data-efficient image transformers & distillation through atten-
tion, in: International Conference on Machine Learning, PMLR, 2021, pp.
10347–10357.

[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the
inception architecture for computer vision, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2818–2826, URL
https://ieeexplore.ieee.org/document/7780677.

[3] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely con-
nected convolutional networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[4] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.

[5] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[6] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[7] Z.J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng,
D.H.P. Chau, CNN explainer: Learning convolutional neural networks with
interactive visualization, IEEE Trans. Vis. Comput. Graphics 27 (2) (2020)
1396–1406.

[8] S. Thys, W. Van Ranst, T. Goedemé, Fooling automated surveillance cam-
eras: adversarial patches to attack person detection, in: Proceedings of
17
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019.

[9] A. Fawzi, H. Fawzi, O. Fawzi, Adversarial vulnerability for any classifier,
Adv. Neural Inf. Process. Syst. 31 (2018).

[10] R. Chitic, A.O. Topal, F. Leprévost, Evolutionary algorithm-based im-
ages, humanly indistinguishable and adversarial against convolutional
neural networks: efficiency and filter robustness, IEEE Access 9 (2021)
160758–160778.

[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
R. Fergus, Intriguing properties of neural networks, 2013, arXiv preprint
arXiv:1312.6199.

[12] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The
limitations of deep learning in adversarial settings, in: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2016, pp. 372–387,
URL https://ieeexplore.ieee.org/document/7467366.

[13] J. Su, D.V. Vargas, K. Sakurai, One pixel attack for fooling deep neural
networks, IEEE Trans. Evol. Comput. 23 (5) (2019) 828–841.

[14] J. Wu, Generating adversarial examples in the harsh conditions, 2020, CoRR
abs/1908.11332. URL https://arxiv.org/abs/1908.11332.

[15] M. Jere, L. Rossi, B. Hitaj, G. Ciocarlie, G. Boracchi, F. Koushanfar, Scratch
that! An evolution-based adversarial attack against neural networks, 2019,
CoRR abs/1912.02316. URL https://arxiv.org/abs/1912.02316.

[16] R. Chitic, F. Leprévost, N. Bernard, Evolutionary algorithms deceive humans
and machines at image classification: an extended proof of concept on two
scenarios, J. Inf. Telecommun. (2020) 1–23.

[17] R. Chitic, N. Bernard, F. Leprévost, A proof of concept to deceive humans
and machines at image classification with evolutionary algorithms, in:
Intelligent Information and Database Systems, 12th Asian Conference,
ACIIDS 2020 (Phuket, Thailand, March 23-26, 2020), Springer, Heidelberg,
2020, pp. 467–480.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, The ImageNet image
database, 2009, http://image-net.org.

[19] S.A. Fezza, Y. Bakhti, W. Hamidouche, O. Déforges, Perceptual evaluation of
adversarial attacks for CNN-based image classification, in: 2019 Eleventh
International Conference on Quality of Multimedia Experience (QoMEX),
IEEE, 2019, pp. 1–6.

[20] N. Carlini, D. Wagner, Towards evaluating the robustness of neural net-
works, in: 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017,
pp. 39–57.

[21] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from
error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004)
URL https://ieeexplore.ieee.org/document/128439.

[22] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer,
2003, URL https://www.springer.com/gp/book/9783642072857.

[23] N. Bernard, F. Leprévost, Evolutionary algorithms for convolutional neu-
ral network visualisation, in: High Performance Computing – 5th Latin
American Conference, CARLA 2018 (Bucaramanga, Colombia, Sep 23-28,
2018), in: Communications in Computer and Information Science, vol. 979,
Springer, Heidelberg, 2018, pp. 18–32.

[24] B. Doerr, Runtime analysis of evolutionary algorithms via symmetry
arguments, Inform. Process. Lett. 166 (2021) 106064.

[25] S. Forrest, M. Mitchell, What makes a problem hard for a genetic algo-
rithm? Some anomalous results and their explanation, Mach. Learn. 13 (2)
(1993) 285–319.

[26] S. Varrette, P. Bouvry, H. Cartiaux, F. Georgatos, Management of an
academic HPC cluster: The UL experience, in: Proceedings of the 2014
International Conference on High Performance Computing & Simulation
(HPCS 2014), IEEE, 2014, pp. 959–967.

[27] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

[28] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures
for scalable image recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8697–8710.

[29] F. Chollet, et al., Keras, 2015, https://keras.io.
[30] G. Van Rossum, F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts

Valley, CA, 2009.
[31] T.E. Oliphant, A Guide to NumPy, Trelgol Publishing USA, 2006.
[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015, URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[33] S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D.
Warner, N. Yager, E. Gouillart, T. Yu, the scikit-image contributors, Scikit-
image: image processing in python, PeerJ 2 (2014) e453, http://dx.doi.org/
10.7717/peerj.453.

http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb1
https://ieeexplore.ieee.org/document/7780677
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb3
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb10
http://arxiv.org/abs/1312.6199
https://ieeexplore.ieee.org/document/7467366
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb13
http://arxiv.org/abs/1908.11332
https://arxiv.org/abs/1908.11332
http://arxiv.org/abs/1912.02316
https://arxiv.org/abs/1912.02316
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb17
http://image-net.org
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb20
https://ieeexplore.ieee.org/document/128439
https://www.springer.com/gp/book/9783642072857
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb26
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb28
https://keras.io
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb31
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453


A.O. Topal, R. Chitic and F. Leprévost Applied Soft Computing 143 (2023) 110397
[34] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, 2015, CoRR abs/1810.00069. arXiv:1412.6572. URL http://arxiv.
org/abs/1412.6572.

[35] A. Kurakin, I.J. Goodfellow, S. Bengio, Adversarial examples in the physical
world, 2016, CoRR abs/1607.02533. arXiv:1607.02533. URL http://arxiv.org/
abs/1607.02533.

[36] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep
learning models resistant to adversarial attacks, 2019, CoRR arXiv:1706.
06083. URL http://arxiv.org/abs/1706.06083.

[37] C. Guo, J. Gardner, Y. You, A.G. Wilson, K. Weinberger, Simple black-
box adversarial attacks, in: International Conference on Machine Learning,
PMLR, 2019, pp. 2484–2493.
18
[38] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, D. Song, Generating adversarial
examples with adversarial networks, 2018, arXiv preprint arXiv:1801.
02610.

[39] M. Nicolae, M. Sinn, T.N. Minh, A. Rawat, M. Wistuba, V. Zantedeschi,
I.M. Molloy, B. Edwards, Adversarial robustness toolbox v1.0.0, 2018, CoRR
abs/1807.01069. URL http://arxiv.org/abs/1807.01069.

[40] C. Targonski, Tensorflow implementation of generating adversarial ex-
amples with adversarial networks, 2019, URL https://github.com/ctargon/
AdvGAN-tf/.

[41] N. Jain, Keras implementation of AdvGAN, 2019, URL https://github.com/
niharikajainn/adv_gan_keras.

http://arxiv.org/abs/1810.00069
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00415-5/sb37
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1807.01069
http://arxiv.org/abs/1807.01069
https://github.com/ctargon/AdvGAN-tf/
https://github.com/ctargon/AdvGAN-tf/
https://github.com/ctargon/AdvGAN-tf/
https://github.com/niharikajainn/adv_gan_keras
https://github.com/niharikajainn/adv_gan_keras
https://github.com/niharikajainn/adv_gan_keras

	One evolutionary algorithm deceives humans and ten convolutional neural networks trained on ImageNet at image recognition
	Introduction
	Adversarial image requisites
	Design of EAtarget, C and choice of the population size
	Key features of EAtarget, C
	Population and crossover sizes: tests design
	Population size tuning: results and interpretation
	Crossover size tuning: results and interpretation

	One EA versus 10 CNNs: Methodology
	Network Domain
	Image Domain
	Experiments and Indicators

	One EA versus 10 CNNs: Results
	Experimental results
	Interpretation

	Comparison of our EA-based attack with six well-known attacks
	Summary of the attacks
	Tests design
	Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix A. Ancestor images
	Appendix B. Adversarial images
	References


