[en] The ocean’s nitrogen is largely fixed by cyanobacteria, including Trichodesmium, which forms aggregates comprising hundreds of filaments arranged in organized architectures. Aggregates often form upon exposure to stress and have ecological and biophysical characteristics that differ from those of single filaments. Here, we report that Trichodesmium aggregates can rapidly modulate their shape, responding within minutes to changes in environmental conditions. Combining video microscopy and mathematical modeling, we discovered that this reorganization is mediated by “smart reversals” wherein gliding filaments reverse when their overlap with other filaments diminishes. By regulating smart reversals, filaments control aggregate architecture without central coordination. We propose that the modulation of gliding motility at the single-filament level is a determinant of Trichodesmium’s aggregation behavior and ultimately of its biogeochemical role in the ocean.
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres Sciences de l’environnement & écologie
Auteur, co-auteur :
Pfreundt, Ulrike
Słomka, Jonasz
Schneider, Giulia
SENGUPTA, Anupam ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Carrara, Francesco
Fernandez, Vicente
Ackermann, Martin
Stocker, Roman
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Controlled motility in the cyanobacterium Trichodesmium regulates aggregate architecture
Date de publication/diffusion :
26 mai 2023
Titre du périodique :
Science
ISSN :
0036-8075
eISSN :
1095-9203
Maison d'édition :
American Association for the Advancement of Science, Washington, Etats-Unis - District de Columbia
FNR11572821 - Biophysics Of Microbial Adaptation To Fluctuations In The Environment, 2017 (15/05/2018-14/05/2023) - Anupam Sengupta
Organisme subsidiant :
FNR - Fonds National de la Recherche SNSF - Swiss National Science Foundation Gordon and Betty Moore Foundation Simons Foundation National Centre of Competence in Research (NCCR) Microbiomes, Switzerland
C. Martínez-Pérez et al., Nat. Microbiol. 1, 16163 (2016).
E. J. Carpenter, D. G. Capone, in Nitrogen In The Marine Environment (Elsevier, 2008), pp. 141–198.
R. M. Letelier, D. M. Karl, Mar. Ecol. Prog. Ser. 133, 263–273 (1996).
M. Rodier, R. Le Borgne, Mar. Pollut. Bull. 61, 349–359 (2010).
I. Bryceson, P. Fay, Mar. Biol. 61, 159–166 (1981).
E. J. Carpenter, A. Subramaniam, D. G. Capone, Deep Sea Res. Part I Oceanogr. Res. Pap. 51, 173–203 (2004).
C. S. Davis, D. J. McGillicuddy Jr., Science 312, 1517–1520 (2006).
A. M. Hynes, E. A. Webb, S. C. Doney, J. B. Waterbury, J. Phycol. 48, 196–210 (2012).
P. R. F. Bell et al., Hydrobiologia 532, 9–21 (2005).
L. Prufert-Bebout, H. W. Paerl, C. Lassen, Appl. Environ. Microbiol. 59, 1367–1375 (1993).
F.-X. Fu, P. R. F. Bell, Mar. Ecol. Prog. Ser. 257, 69–76 (2003).
Y. Tzubari, L. Magnezi, A. Be’er, I. Berman-Frank, ISME J. 12, 1682–1693 (2018).
Y.-B. Chen, J. P. Zehr, M. Mellon, J. Phycol. 32, 916–923 (1996).
M. Rubin, I. Berman-Frank, Y. Shaked, Nat. Geosci. 4, 529–534 (2011).
A. E. White, Y. H. Spitz, R. M. Letelier, Mar. Ecol. Prog. Ser. 323, 35–45 (2006).
K. R. Frischkorn, M. Rouco, B. A. S. Van Mooy, S. T. Dyhrman, ISME J. 11, 2090–2101 (2017).
K. R. Frischkorn, S. T. Haley, S. T. Dyhrman, ISME J. 12, 997–1007 (2018).
J. G. Rueter, D. A. Hutchins, R. W. Smith, N. L. Unsworth, in Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, E. J. Carpenter, D. G. Capone, J. G. Rueter, Eds. (Springer, 1992), pp. 289–306.
K. R. Frischkorn, S. T. Haley, S. T. Dyhrman, Front. Microbiol. 10, 330 (2019).
M. D. Lee et al., ISME J. 11, 1813–1824 (2017).
B. A. S. Van Mooy et al., ISME J. 6, 422–429 (2012).
S. Basu, M. Gledhill, D. de Beer, S. G. Prabhu Matondkar, Y. Shaked, Commun. Biol. 2, 284 (2019).
M. Rouco, S. T. Haley, S. T. Dyhrman, Environ. Microbiol. 18, 5151–5160 (2016).
M. Eichner, S. Basu, M. Gledhill, D. de Beer, Y. Shaked, Front. Microbiol. 10, 1565 (2019).
M. J. Eichner et al., ISME J. 11, 1305–1317 (2017).
M. Eichner et al., New Phytol. 222, 852–863 (2019).
N. Kessler et al., ISME J. 14, 91–103 (2020).
N. A. Held et al., Nat. Microbiol. 7, 300–311 (2022).
T. A. Villareal, E. J. Carpenter, Microb. Ecol. 45, 1–10 (2003).
M. Benavides et al., ISME J. 16, 2398–2405 (2022).
M. Rodier, R. Le Borgne, J. Exp. Mar. Biol. Ecol. 358, 20–32 (2008).
D. G. Capone et al., Mar. Ecol. Prog. Ser. 172, 281–292 (1998).
D. M. Karl, R. Letelier, D. V. Hebel, D. F. Bird, C. D. Winn, in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, E. J. Carpenter, D. G. Capone, J. G. Rueter, Eds. (Springer, 1992), pp. 219–237.
E. J. Carpenter, D. G. Capone, in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, E. J. Carpenter, D. G. Capone, J. G. Rueter, Eds. (Springer, 1992), pp. 211–217.
K. M. Orcutt et al., Appl. Environ. Microbiol. 68, 2236–2245 (2002).
N. Blot et al., Plant Physiol. 156, 1934–1954 (2011).
H. W. Paerl, B. M. Bebout, in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, E. J. Carpenter, D. G. Capone, J. G. Rueter, Eds. (1992), pp. 43–59.
X. Kammerscheit, F. Chauvat, C. Cassier-Chauvat, Front. Microbiol. 10, 1899 (2019).
S. J. Schnörr, P. J. Steenbergen, M. K. Richardson, D. L. Champagne, Behav. Brain Res. 228, 367–374 (2012).
J. Sikora, Z. Baranowski, M. Zajaczkowska, Experientia 48, 789–792 (1992).
L. V. Migal, V. G. Bondarev, N. A. Chekanov, T. P. Bondareva, J. Phys. Conf. Ser. 1479, 012097 (2020).
J. R. Rothenbuhler, J.-R. Huang, B. A. DiDonna, A. J. Levine, T. G. Mason, Soft Matter 5, 3639–3645 (2009).
J.-A. Arguedas-Leiva, J. Słomka, C. C. Lalescu, R. Stocker, M. Wilczek, Proc. Natl. Acad. Sci. U.S.A. 119, e2203191119 (2022).
W. M. Dunstan, J. Hosford, Bull. Mar. Sci. 27, 824–829 (1977).
E. Breitbarth, J. Wohlers, J. Kläs, J. LaRoche, I. Peeken, Mar. Ecol. Prog. Ser. 359, 25–36 (2008).
C. M. Holl, J. P. Montoya, J. Phycol. 44, 929–937 (2008).
M. R. Mulholland, D. G. Capone, Mar. Ecol. Prog. Ser. 188, 33–49 (1999).
N. A. Held et al., ISME Commun. 1, 35 (2021).
T. O. Delmont, Proc. Natl. Acad. Sci. U.S.A. 118, e2112355118 (2021).
I. Berman-Frank, G. Rosenberg, O. Levitan, L. Haramaty, X. Mari, Environ. Microbiol. 9, 1415–1422 (2007).
D. Kaiser, Annu. Rev. Microbiol. 58, 75–98 (2004).
M. Bär, R. Großmann, S. Heidenreich, F. Peruani, Annu. Rev. Condens. Matter Phys. 11, 441–466 (2020).
M. C. Marchetti et al., Rev. Mod. Phys. 85, 1143–1189 (2013).
G. Liu et al., Phys. Rev. Lett. 122, 248102 (2019).
M. J. Kühn et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2101759118 (2021).
R. W. Castenholz, Nature 215, 1285–1286 (1967).
A. Wilde, C. W. Mullineaux, Mol. Microbiol. 98, 998–1001 (2015).
A. Guljamow et al., Appl. Environ. Microbiol. 83, e01510–e01517 (2017).
K. Milferstedt et al., Sci. Rep. 7, 17944 (2017).
S. J. N. Duxbury, S. Raguideau, J. Rosko, K. Cremin, M. Coates, C. Quince, O. S. Soyer, Reproducible spatial structure formation and stable community composition in the cyanosphere predicts metabolic interactions. bioRxiv 2022.12.13.520286 [Preprint] (2022); https://doi.org/10.1101/2022.12.13.520286.
J. Slomka, Data Collection for the article 'Controlled motility in the cyanobacterium Trichodesmium regulates aggregate architecture', ETH Research Collection (2022); https://doi.org/10.3929/ethz-b-000596515.