[en] Homozygous or compound heterozygous (biallelic) variants in PRKN are causal for PD with highly penetrant symptom expression, while the much more common heterozygous variants may predispose to PD with highly reduced penetrance, through altered mitochondrial function. In the presence of pathogenic heterozygous variants, it is therefore important to test for mitochondrial alteration in cells derived from variant carriers to establish potential presymptomatic molecular markers. We generated lymphoblasts (LCLs) and human induced pluripotent stem cell (hiPSC)-derived neurons from non-manifesting heterozygous PRKN variant carriers and tested them for mitochondrial functionality. In LCLs, we detected hyperactive mitochondrial respiration, and, although milder compared to a biallelic PRKN-PD patient, hiPSC-derived neurons of non-manifesting heterozygous variant carriers also displayed several phenotypes of altered mitochondrial function. Overall, we identified molecular phenotypes that might be used to monitor heterozygous PRKN variant carriers during the prodromal phase. Such markers might also be useful to identify individuals at greater risk of eventual disease development and for testing potential mitochondrial function-based neuroprotective therapies before neurodegeneration advances
Disciplines :
Neurology
Author, co-author :
Castelo Rueda, Maria Paulina
Zanon, Alessandra; 1Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
Gilmozzi, Valentina; 1Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
Lavdas, Alexandros; 1Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
Raftopoulou, Athina
DELCAMBRE, Sylvie ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
Del Greco, Fabiola; 1Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
Klein, Christine; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
GRÜNEWALD, Anne ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
Pramstaller, Peter; nstitute of Neurogenetics, University of Lübeck, Lübeck, Germany
Hicks, Andrew; nstitute of Neurogenetics, University of Lübeck, Lübeck, Germany
Pichler, Irene; nstitute of Neurogenetics, University of Lübeck, Lübeck, Germany
External co-authors :
yes
Language :
English
Title :
Molecular phenotypes of mitochondrial dysfunction in clinically non-manifesting heterozygous PRKN variant carriers
Publication date :
2023
Journal title :
NPJ Parkinson's Disease
eISSN :
2373-8057
Publisher :
Nature Publishing Group, New-York, United States - New York
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Systems Biomedicine
FnR Project :
FNR9631103 - Modelling Idiopathic Parkinson'S Disease-associated Somatic Variation In Dopaminergic Neurons, 2015 (01/01/2016-31/12/2022) - Anne Grünewald
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bloem, B. R., Okun, M. S. Klein, C. Parkinson’s disease. Lancet. https://doi.org/10.1016/S0140-6736(21)00218-X (2021).
Kouli, A., Torsney, K. M. Kuan, W. L. In Parkinson’s Disease: Pathogenesis and Clinical Aspects (eds Stoker, T. B. & Greenland, J. C.) Ch. 1, (Codon Publications, 2018).
Forno, L. S. Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272 (1996). DOI: 10.1097/00005072-199603000-00001
Moustafa, A. A. et al. Motor symptoms in Parkinson’s disease: a unified framework. Neurosci. Biobehav. Rev. 68, 727–740 (2016). DOI: 10.1016/j.neubiorev.2016.07.010
Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020). DOI: 10.1016/S1474-4422(19)30287-X
Park, J. S., Davis, R. L. & Sue, C. M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic isights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 18, 21 (2018). DOI: 10.1007/s11910-018-0829-3
Domingo, A. & Klein, C. Genetics of Parkinson disease. Handb. Clin. Neurol. 147, 211–227 (2018). DOI: 10.1016/B978-0-444-63233-3.00014-2
Kasten, M. et al. Genotype-phenotype relations for the Parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov. Disord. 33, 730–741 (2018). DOI: 10.1002/mds.27352
Lesage, S. et al. Characterization of recessive Parkinson’s disease in a large multicenter study. Ann. Neurol. https://doi.org/10.1002/ana.25787 (2020).
Pramstaller, P. P. et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann. Neurol. 58, 411–422 (2005). DOI: 10.1002/ana.20587
Castelo Rueda, M. P. et al. Frequency of heterozygous Parkin (PRKN) variants and penetrance of Parkinson’s disease risk markers in the population-based CHRIS cohort. Front. Neurol. 12, 706145 (2021). DOI: 10.3389/fneur.2021.706145
Klein, C., Lohmann-Hedrich, K., Rogaeva, E., Schlossmacher, M. G. & Lang, A. E. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol. 6, 652–662 (2007). DOI: 10.1016/S1474-4422(07)70174-6
Huttenlocher, J. et al. Heterozygote carriers for CNVs in PARK2 are at increased risk of Parkinson’s disease. Hum. Mol. Genet. 24, 5637–5643 (2015). DOI: 10.1093/hmg/ddv277
Lubbe, S. J. et al. Assessing the relationship between monoallelic PRKN mutations and Parkinson’s risk. Hum. Mol. Genet. 30, 78–86 (2021). DOI: 10.1093/hmg/ddaa273
Zhu, W. et al. Heterozygous PRKN mutations are common but do not increase the risk of Parkinson’s disease. Brain. https://doi.org/10.1093/brain/awab456 (2022).
Yu, E. et al. Analysis of heterozygous PRKN variants and copy-number variations in Parkinson’s disease. Mov. Disord. 36, 178–187 (2021). DOI: 10.1002/mds.28299
Weissbach, A. et al. Influence of L-dopa on subtle motor signs in heterozygous Parkin- and PINK1 mutation carriers. Parkinsonism Relat. Disord. 42, 95–99 (2017). DOI: 10.1016/j.parkreldis.2017.07.003
Prasuhn, J. et al. Task matters - challenging the motor system allows distinguishing unaffected Parkin mutation carriers from mutation-free controls. Parkinsonism Relat. Disord. 86, 101–104 (2021). DOI: 10.1016/j.parkreldis.2021.03.028
Binkofski, F. et al. Morphometric fingerprint of asymptomatic Parkin and PINK1 mutation carriers in the basal ganglia. Neurology 69, 842–850 (2007). DOI: 10.1212/01.wnl.0000267844.72421.6c
Hilker, R. et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann. Neurol. 49, 367–376 (2001). DOI: 10.1002/ana.74
Guo, J. F. et al. Clinical features and [11C]-CFT PET analysis of PARK2, PARK6, PARK7-linked autosomal recessive early onset Parkinsonism. Neurol. Sci. 32, 35–40 (2011). DOI: 10.1007/s10072-010-0360-z
Pavese, N. et al. Nigrostriatal dysfunction in homozygous and heterozygous parkin gene carriers: an 18F-dopa PET progression study. Mov. Disord. 24, 2260–2266 (2009). DOI: 10.1002/mds.22817
Santos, M., Morais, S., Pereira, C., Sequeiros, J. & Alonso, I. Parkin truncating variants result in a loss-of-function phenotype. Sci. Rep. 9, 16150 (2019). DOI: 10.1038/s41598-019-52534-6
Mouton-Liger, F., Jacoupy, M., Corvol, J. C. & Corti, O. PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson’s disease. Front. Mol. Neurosci. 10, 120 (2017). DOI: 10.3389/fnmol.2017.00120
Ge, P., Dawson, V. L. & Dawson, T. M. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol. Neurodegener. 15, 20 (2020). DOI: 10.1186/s13024-020-00367-7
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305 (2000). DOI: 10.1038/77060
Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011). DOI: 10.1038/nrm3028
Trempe, J. F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013). DOI: 10.1126/science.1237908
Trinh, D., Israwi, A. R., Arathoon, L. R., Gleave, J. A. & Nash, J. E. The multi-faceted role of mitochondria in the pathology of Parkinson’s disease. J. Neurochem. 156, 715–752 (2021). DOI: 10.1111/jnc.15154
Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010). DOI: 10.1093/hmg/ddq419
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008). DOI: 10.1083/jcb.200809125
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010). DOI: 10.1073/pnas.0911187107
Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702 (2011). DOI: 10.1016/j.cell.2011.02.010
Wasner, K. et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation. Mov. Disord. https://doi.org/10.1002/mds.29025 (2022).
Pickrell, A. M. et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87, 371–381 (2015). DOI: 10.1016/j.neuron.2015.06.034
Bruggemann, N. et al. Frequency of heterozygous Parkin mutations in healthy subjects: need for careful prospective follow-up examination of mutation carriers. Parkinsonism Relat. Disord. 15, 425–429 (2009). DOI: 10.1016/j.parkreldis.2008.11.014
Qadri, R. et al. Alterations in mitochondrial membrane potential in peripheral blood mononuclear cells in Parkinson’s disease: potential for a novel biomarker. Restor. Neurol. Neurosci. 36, 719–727 (2018).
Agostini, M. et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502–1514 (2016). DOI: 10.1038/cdd.2016.36
Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010). DOI: 10.1002/stem.404
Maffezzini, C., Calvo-Garrido, J., Wredenberg, A. & Freyer, C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol. Life Sci. 77, 2483–2496 (2020). DOI: 10.1007/s00018-019-03430-9
Castelo Rueda, M. P. et al. Generation and characterization of induced pluripotent stem cell (iPSC) lines of two asymptomatic individuals carrying a heterozygous exon 7 deletion in Parkin (PRKN) and two non-carriers from the same family. Stem Cell Res. 60, 102692 (2022). DOI: 10.1016/j.scr.2022.102692
Brand, M. D. et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767 (2004). DOI: 10.1016/j.freeradbiomed.2004.05.034
Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013). DOI: 10.3233/JPD-130230
Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010). DOI: 10.1083/jcb.201007013
Rakovic, A. et al. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE 6, e16746 (2011). DOI: 10.1371/journal.pone.0016746
Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010). DOI: 10.1073/pnas.0913485107
Ordureau, A. et al. Global landscape and dynamics of Parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling. Mol. Cell 77, 1124–1142 e1110 (2020). DOI: 10.1016/j.molcel.2019.11.013
Nissen, S. K. et al. Alterations in blood monocyte functions in Parkinson’s disease. Mov. Disord. 34, 1711–1721 (2019). DOI: 10.1002/mds.27815
Scherzer, C. R. et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl Acad. Sci. USA 104, 955–960 (2007). DOI: 10.1073/pnas.0610204104
Smith, A. M. et al. Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson’s blood cells. Mov. Disord. 33, 1580–1590 (2018). DOI: 10.1002/mds.104
Vida, C. et al. Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson’s disease patients. Int. J. Mol. Sci. 20, 771 (2019). DOI: 10.3390/ijms20030771
Grunewald, A. et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS ONE 5, e12962 (2010). DOI: 10.1371/journal.pone.0012962
Mortiboys, H. et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann. Neurol. 64, 555–565 (2008). DOI: 10.1002/ana.21492
Zilocchi, M. et al. Exploring the impact of PARK2 mutations on the total and mitochondrial proteome of human skin fibroblasts. Front. Cell Dev. Biol. 8, 423 (2020). DOI: 10.3389/fcell.2020.00423
Muftuoglu, M. et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19, 544–548 (2004). DOI: 10.1002/mds.10695
Annesley, S. J. et al. Immortalized Parkinson’s disease lymphocytes have enhanced mitochondrial respiratory activity. Dis. Model. Mech. 9, 1295–1305 (2016).
Annesley, S. J., Allan, C. Y., Sanislav, O., Evans, A. & Fisher, P. R. Dysregulated Gene Expression in Lymphoblasts from Parkinson’s Disease. Proteomes 10, 20 (2022). DOI: 10.3390/proteomes10020020
Haylett, W. et al. Altered mitochondrial respiration and other features of mitochondrial function in Parkin-mutant fibroblasts from Parkinson’s disease patients. Parkinsons Dis. 2016, 1819209 (2016).
Gonzalez-Casacuberta, I. et al. Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations. Aging 11, 3750–3767 (2019). DOI: 10.18632/aging.102014
Ming, F. et al. The PARK2 mutation associated with Parkinson’s disease enhances the vulnerability of peripheral blood lymphocytes to paraquat. Biomed. Res. Int. 2020, 4658109 (2020). DOI: 10.1155/2020/4658109
Trinh, J. et al. Mitochondrial DNA heteroplasmy distinguishes disease manifestation in PINK1/PRKN-linked Parkinson’s disease. Brain awac464 (2022).
Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5, e13374 (2016). DOI: 10.7554/eLife.13374
O’Brien, L. C., Keeney, P. M. & Bennett, J. P. Jr Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev. 24, 1984–1994 (2015). DOI: 10.1089/scd.2015.0076
Schwartzentruber, A. et al. Oxidative switch drives mitophagy defects in dopaminergic parkin mutant patient neurons. Sci. Rep. 10, 15485 (2020). DOI: 10.1038/s41598-020-72345-4
Kumar, M. et al. Defects in mitochondrial biogenesis drive mitochondrial alterations in PARKIN-deficient human dopamine neurons. Stem Cell Rep. 15, 629–645 (2020). DOI: 10.1016/j.stemcr.2020.07.013
Zanon, A. et al. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila. Hum. Mol. Genet. 26, 2412–2425 (2017). DOI: 10.1093/hmg/ddx132
Bogetofte, H. et al. PARK2 mutation causes metabolic disturbances and impaired survival of human iPSC-derived neurons. Front. Cell Neurosci. 13, 297 (2019). DOI: 10.3389/fncel.2019.00297
Okarmus, J. et al. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. Stem Cell Rep. 16, 1510–1526 (2021). DOI: 10.1016/j.stemcr.2021.04.022
Yamaguchi, A. et al. Identifying therapeutic agents for amelioration of mitochondrial clearance disorder in neurons of familial Parkinson disease. Stem Cell Rep. 14, 1060–1075 (2020). DOI: 10.1016/j.stemcr.2020.04.011
Chung, S. Y. et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and alpha-synuclein accumulation. Stem Cell Rep. 7, 664–677 (2016). DOI: 10.1016/j.stemcr.2016.08.012
Filograna, R., Beltramini, M., Bubacco, L. & Bisaglia, M. Anti-oxidants in Parkinson’s disease therapy: a critical point of view. Curr. Neuropharmacol. 14, 260–271 (2016). DOI: 10.2174/1570159X13666151030102718
Pacelli, C. et al. Mitochondrial defect and PGC-1alpha dysfunction in parkin-associated familial Parkinson’s disease. Biochim. Biophys. Acta 1812, 1041–1053 (2011). DOI: 10.1016/j.bbadis.2010.12.022
Imaizumi, Y. et al. Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain 5, 35 (2012). DOI: 10.1186/1756-6606-5-35
Shaltouki, A. et al. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep. 4, 847–859 (2015). DOI: 10.1016/j.stemcr.2015.02.019
Yokota, M. et al. Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Mol. Brain 14, 58 (2021). DOI: 10.1186/s13041-021-00771-0
Suzuki, S. et al. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochem. Biophys. Res. Commun. 483, 88–93 (2017). DOI: 10.1016/j.bbrc.2016.12.188
Burton, E. M. & Gewurz, B. E. Epstein-Barr virus oncoprotein-driven B cell metabolism remodeling. PLoS Pathog. 18, e1010254 (2022). DOI: 10.1371/journal.ppat.1010254
Darekar, S. et al. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS ONE 7, e42072 (2012). DOI: 10.1371/journal.pone.0042072
Fraenkel, J. R., Hyun, H.H., Wallen, N.E. How to Design and Evaluate Research in Education 8th edn (McGraw Hill, 2012).
Gall, M. D., Gall, J. P., Borg, W. R. Educational Research: An Introduction 7th edn (Pearson Education Inc., 2003).
Prasuhn, J. et al. An omics-based strategy using coenzyme Q10 in patients with Parkinson’s disease: concept evaluation in a double-blind randomized placebo-controlled parallel group trial. Neurol. Res. Pract. 1, 31 (2019). DOI: 10.1186/s42466-019-0033-1
Prasuhn, J. et al. The use of vitamin K2 in patients with Parkinson’s disease and mitochondrial dysfunction (PD-K2): a theranostic pilot study in a placebo-controlled parallel group design. Front. Neurol. 11, 592104 (2020). DOI: 10.3389/fneur.2020.592104
Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015). DOI: 10.1186/s12967-015-0704-9
Pramstaller, P. P., Falk, M., Schoenhuber, R. & Poewe, W. Validation of a mail questionnaire for parkinsonism in two languages (German and Italian). J. Neurol. 246, 79–86 (1999). DOI: 10.1007/s004150050312
Zanon, A. et al. Generation of an induced pluripotent stem cell line (EURACi005-A) from a Parkinson’s disease patient carrying a homozygous exon 3 deletion in the PRKNgene. Stem Cell Res. 41, 101624 (2019). DOI: 10.1016/j.scr.2019.101624
Penno, M. B., Pedrotti-Krueger, M. & Ray, T. Cryopreservation of whole blood and isolated lymphocytes for B-cell immortalization. J. Tissue Culture Methods 15, 43–47 (1993). DOI: 10.1007/BF02387289
Sie, L., Loong, S. & Tan, E. K. Utility of lymphoblastoid cell lines. J. Neurosci. Res. 87, 1953–1959 (2009). DOI: 10.1002/jnr.22000
Coore, H. G., Denton, R. M., Martin, B. R. & Randle, P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem. J. 125, 115–127 (1971). DOI: 10.1042/bj1250115
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011). DOI: 10.1038/nature10648
Mazzulli, J. R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl Acad. Sci. USA 113, 1931–1936 (2016). DOI: 10.1073/pnas.1520335113
Fazzini, F. et al. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J. Intern. Med. 290, 190–202 (2021). DOI: 10.1111/joim.13242