Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Improving Long-Term Retention through Personalized Recall Testing and Immediate Feedback
ATASHPENDAR, Aryobarzan; ROTHKUGEL, Steffen
2023In Proceedings of the 2023 11th International Conference on Information and Education Technology (ICIET)
Peer reviewed
 

Documents


Texte intégral
T041.pdf
Postprint Éditeur (279.26 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
testing effect; digital quiz; recall and recognition; dynamic difficulty
Résumé :
[en] Tests have been shown to improve the long-term retention of students, referred to as the "testing effect". Different question formats, such as multiple choice and recall, have varying properties. While recall questions induce a longer retention than multiple choice ones, they are harder for students since answers must be actively retrieved from memory. Moreover, regular testing inherently increases the teacher's workload, particularly since feedback on each test is paramount for an effective bearing on the student's understanding and learning. This work introduces BEACON Q, a digital quiz application combining different question formats and progressively adapting their difficulty to each student’s level. The level is derived from past answers as well as ratings provided by the students which constitute their perceived understanding of each topic. BEACON Q delivers immediate feedback through detailed explanations, without requiring manual assessment by the teacher. Tests are scheduled for periods of time, thus giving the students the flexibility to choose an appropriate time to take the test. An initial evaluation of BEACON Q has been performed in the context of three different computer science classes at our university. Preliminary results are presented in this paper.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ATASHPENDAR, Aryobarzan  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
ROTHKUGEL, Steffen ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Improving Long-Term Retention through Personalized Recall Testing and Immediate Feedback
Date de publication/diffusion :
mars 2023
Nom de la manifestation :
2023 11th International Conference on Information and Education Technology (ICIET)
Date de la manifestation :
from 18-03-2023 to 20-03-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 2023 11th International Conference on Information and Education Technology (ICIET)
ISBN/EAN :
978-1-6654-6548-9
Peer reviewed :
Peer reviewed
Focus Area :
Educational Sciences
Disponible sur ORBilu :
depuis le 16 mai 2023

Statistiques


Nombre de vues
183 (dont 12 Unilu)
Nombre de téléchargements
11 (dont 4 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu