Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
DESHPANDE, Saurabh; BORDAS, Stéphane; LENGIEWICZ, Jakub
2023
 

Documents


Texte intégral
2211.00713.pdf
Preprint Auteur (17.36 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In many cutting-edge applications, high-fidelity computational models prove too slow to be practical and are thus replaced by much faster surrogate models. Recently, deep learning techniques have become increasingly important in accelerating such predictions. However, they tend to falter when faced with larger and more complex problems. Therefore, this work introduces MAgNET: Multi-channel Aggregation Network, a novel geometric deep learning framework designed to operate on large-dimensional data of arbitrary structure (graph data). MAgNET is built upon the MAg (Multichannel Aggregation) operation, which generalizes the concept of multi-channel local operations in convolutional neural networks to arbitrary non-grid inputs. The MAg layers are interleaved with the proposed novel graph pooling/unpooling operations to form a graph U-Net architecture that is robust and can handle arbitrary complex meshes, efficiently performing supervised learning on large- dimensional graph-structured data. We demonstrate the predictive capabilities of MAgNET for several non-linear finite element simulations and provide open-source datasets and codes to facilitate future research.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DESHPANDE, Saurabh  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
LENGIEWICZ, Jakub ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Langue du document :
Anglais
Titre :
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
Date de publication/diffusion :
mars 2023
Focus Area :
Computational Sciences
Projet européen :
H2020 - 764644 - RAINBOW - Rapid Biomechanics Simulation for Personalized Clinical Design
Projet FnR :
FNR14782078 - Quantum-continuum Bridging, 2020 (01/09/2021-31/08/2024) - Stéphane Bordas
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 02 mai 2023

Statistiques


Nombre de vues
178 (dont 16 Unilu)
Nombre de téléchargements
257 (dont 7 Unilu)

citations OpenAlex
 
33

Bibliographie


Publications similaires



Contacter ORBilu