Apoptosis Inducing Factor/genetics/metabolism; Cysteine/genetics/metabolism; Disulfides/metabolism; Electron Transport Complex I/genetics/metabolism; Gene Expression Regulation; Humans; Mitochondria/genetics/metabolism; Mitochondrial Membrane Transport Proteins/genetics; Mitochondrial Precursor Protein Import Complex Proteins; Mitochondrial Proteins/genetics; Mutation/genetics; Protein Transport/genetics; Saccharomyces cerevisiae/genetics/metabolism; Disulfide relay system; Metabolism; Mitochondria; Mitochondrial protein import; Respiratory chain machinery
Abstract :
[en] In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Reinhardt, Camille
ARENA, Giuseppe ; Université Paris-Saclay, Institut Gustave Roussy, Inserm, Radiothérapie Moléculaire, 94805 Villejuif, France.
Nedara, Kenza
Edwards, Ruairidh
Brenner, Catherine
Tokatlidis, Kostas
Modjtahedi, Nazanine
External co-authors :
yes
Language :
English
Title :
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway.
Publication date :
2020
Journal title :
Biochimica et Biophysica Acta - Molecular Basis of Disease
Hangen, E., Blomgren, K., Benit, P., Kroemer, G., Modjtahedi, N., Life with or without AIF. Trends Biochem. Sci. 35 (2010), 278–287.
Delavallee, L., Cabon, L., Galan-Malo, P., Lorenzo, H.K., Susin, S.A., AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63 (2011), 221–232.
Bano, D., Prehn, J.H.M., Apoptosis-inducing factor (AIF) in physiology and disease: the tale of a repented natural born killer. EBioMedicine 30 (2018), 29–37.
Hangen, E., Feraud, O., Lachkar, S., Mou, H., Doti, N., Fimia, G.M., Lam, N.V., Zhu, C., Godin, I., Muller, K., Chatzi, A., Nuebel, E., Ciccosanti, F., Flamant, S., Benit, P., Perfettini, J.L., Sauvat, A., Bennaceur-Griscelli, A., Ser-Le Roux, K., Gonin, P., Tokatlidis, K., Rustin, P., Piacentini, M., Ruvo, M., Blomgren, K., Kroemer, G., Modjtahedi, N., Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis. Mol. Cell 58 (2015), 1001–1014.
Meyer, K., Buettner, S., Ghezzi, D., Zeviani, M., Bano, D., Nicotera, P., Loss of apoptosis-inducing factor critically affects MIA40 function. Cell Death Dis., 6, 2015, e1814.
Modjtahedi, N., Tokatlidis, K., Dessen, P., Kroemer, G., Mitochondrial proteins containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) domains in health and disease. Trends Biochem. Sci. 41 (2016), 245–260.
Chatzi, A., Manganas, P., Tokatlidis, K., Oxidative folding in the mitochondrial intermembrane space: a regulated process important for cell physiology and disease. Biochim. Biophys. Acta 1863 (2016), 1298–1306.
Herrmann, J.M., Riemer, J., Oxidation and reduction of cysteines in the intermembrane space of mitochondria: multiple facets of redox control. Antioxid. Redox Signal. 13 (2010), 1323–1326.
Longen, S., Bien, M., Bihlmaier, K., Kloeppel, C., Kauff, F., Hammermeister, M., Westermann, B., Herrmann, J.M., Riemer, J., Systematic analysis of the twin cx(9)c protein family. J. Mol. Biol. 393 (2009), 356–368.
Herrmann, J.M., Riemer, J., Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid. Redox Signal. 21 (2014), 438–456.
Habich, M., Salscheider, S.L., Riemer, J., Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br. J. Pharmacol. 176 (2019), 514–531.
Mate, M.J., Ortiz-Lombardia, M., Boitel, B., Haouz, A., Tello, D., Susin, S.A., Penninger, J., Kroemer, G., Alzari, P.M., The crystal structure of the mouse apoptosis-inducing factor AIF. Nat. Struct. Biol. 9 (2002), 442–446.
Li, W., Sun, L., Liang, Q., Wang, J., Mo, W., Zhou, B., Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol. Biol. Cell 17 (2006), 1802–1811.
Elguindy, M.M., Nakamaru-Ogiso, E., Apoptosis-inducing Factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J. Biol. Chem. 290 (2015), 20815–20826.
Hangen, E., De Zio, D., Bordi, M., Zhu, C., Dessen, P., Caffin, F., Lachkar, S., Perfettini, J.L., Lazar, V., Benard, J., Fimia, G.M., Piacentini, M., Harper, F., Pierron, G., Vicencio, J.M., Benit, P., de Andrade, A., Hoglinger, G., Culmsee, C., Rustin, P., Blomgren, K., Cecconi, F., Kroemer, G., Modjtahedi, N., A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2. Cell Death Differ. 17 (2010), 1155–1166.
Otera, H., Ohsakaya, S., Nagaura, Z., Ishihara, N., Mihara, K., Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J. 24 (2005), 1375–1386.
Ferreira, P., Villanueva, R., Martinez-Julvez, M., Herguedas, B., Marcuello, C., Fernandez-Silva, P., Cabon, L., Hermoso, J.A., Lostao, A., Susin, S.A., Medina, M., Structural insights into the coenzyme mediated monomer-dimer transition of the pro-apoptotic apoptosis inducing factor. Biochemistry 53 (2014), 4204–4215.
Sorrentino, L., Calogero, A.M., Pandini, V., Vanoni, M.A., Sevrioukova, I.F., Aliverti, A., Key role of the adenylate moiety and integrity of the adenylate-binding site for the NAD(+)/H binding to mitochondrial apoptosis-inducing factor. Biochemistry 54 (2015), 6996–7009.
Sevrioukova, I.F., Structure/function relations in AIFM1 variants associated with neurodegenerative disorders. J. Mol. Biol. 428 (2016), 3650–3665.
Vahsen, N., Cande, C., Dupaigne, P., Giordanetto, F., Kroemer, R.T., Herker, E., Scholz, S., Modjtahedi, N., Madeo, F., Le Cam, E., Kroemer, G., Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25 (2006), 1763–1774.
Loeffler, M., Daugas, E., Susin, S.A., Zamzami, N., Metivier, D., Nieminen, A.L., Brothers, G., Penninger, J.M., Kroemer, G., Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J. 15 (2001), 758–767.
Rodriguez, J., Zhang, Y., Li, T., Xie, C., Sun, Y., Xu, Y., Zhou, K., Huo, K., Wang, Y., Wang, X., Andersson, D., Stahlberg, A., Xing, Q., Mallard, C., Hagberg, H., Modjtahedi, N., Kroemer, G., Blomgren, K., Zhu, C., Lack of the brain-specific isoform of apoptosis-inducing factor aggravates cerebral damage in a model of neonatal hypoxia-ischemia. Cell Death Dis., 10, 2018, 3.
Delettre, C., Yuste, V.J., Moubarak, R.S., Bras, M., Lesbordes-Brion, J.C., Petres, S., Bellalou, J., Susin, S.A., AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J. Biol. Chem. 281 (2006), 6413–6427.
Delettre, C., Yuste, V.J., Moubarak, R.S., Bras, M., Robert, N., Susin, S.A., Identification and characterization of AIFsh2, a mitochondrial apoptosis-inducing factor (AIF) isoform with NADH oxidase activity. J. Biol. Chem. 281 (2006), 18507–18518.
Stambolsky, P., Weisz, L., Shats, I., Klein, Y., Goldfinger, N., Oren, M., Rotter, V., Regulation of AIF expression by p53. Cell Death Differ. 13 (2006), 2140–2149.
Labuschagne, C.F., Zani, F., Vousden, K.H., Control of metabolism by p53 - Cancer and beyond. Biochim Biophys Acta Rev. Cancer 1870 (2018), 32–42.
Shen, S.M., Yu, Y., Wu, Z.X., Zheng, Y., Chen, G.Q., Wang, L.S., Apoptosis-inducing factor is a target gene of C/EBPalpha and participates in adipocyte differentiation. FEBS Lett. 585 (2011), 2307–2312.
Xiong, Z., Guo, M., Yu, Y., Zhang, F.F., Ge, M.K., Chen, G.Q., Shen, S.M., Downregulation of AIF by HIF-1 contributes to hypoxia-induced epithelial-mesenchymal transition of colon cancer. Carcinogenesis 37 (2016), 1079–1088.
Benit, P., Goncalves, S., Dassa, E.P., Briere, J.J., Rustin, P., The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. PLoS One, 3, 2008, e3208.
Armand, A.S., Laziz, I., Djeghloul, D., Lecolle, S., Bertrand, A.T., Biondi, O., De Windt, L.J., Chanoine, C., Apoptosis-inducing factor regulates skeletal muscle progenitor cell number and muscle phenotype. PLoS One, 6, 2011, e27283.
Banerjee, H., Das, A., Srivastava, S., Mattoo, H.R., Thyagarajan, K., Khalsa, J.K., Tanwar, S., Das, D.S., Majumdar, S.S., George, A., Bal, V., Durdik, J.M., Rath, S., A role for apoptosis-inducing factor in T cell development. J. Exp. Med. 209 (2012), 1641–1653.
Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W., Zuniga-Pflucker, J.C., Kroemer, G., Penninger, J.M., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410 (2001), 549–554.
Ishimura, R., Martin, G.R., Ackerman, S.L., Loss of apoptosis-inducing factor results in cell-type-specific neurogenesis defects. J. Neurosci. 28 (2008), 4938–4948.
Cheung, E.C., Joza, N., Steenaart, N.A., McClellan, K.A., Neuspiel, M., McNamara, S., MacLaurin, J.G., Rippstein, P., Park, D.S., Shore, G.C., McBride, H.M., Penninger, J.M., Slack, R.S., Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J. 25 (2006), 4061–4073.
Pospisilik, J.A., Knauf, C., Joza, N., Benit, P., Orthofer, M., Cani, P.D., Ebersberger, I., Nakashima, T., Sarao, R., Neely, G., Esterbauer, H., Kozlov, A., Kahn, C.R., Kroemer, G., Rustin, P., Burcelin, R., Penninger, J.M., Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131 (2007), 476–491.
Joza, N., Oudit, G.Y., Brown, D., Benit, P., Kassiri, Z., Vahsen, N., Benoit, L., Patel, M.M., Nowikovsky, K., Vassault, A., Backx, P.H., Wada, T., Kroemer, G., Rustin, P., Penninger, J.M., Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol. Cell. Biol. 25 (2005), 10261–10272.
Milasta, S., Dillon, C.P., Sturm, O.E., Verbist, K.C., Brewer, T.L., Quarato, G., Brown, S.A., Frase, S., Janke, L.J., Perry, S.S., Thomas, P.G., Green, D.R., Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function. Immunity 44 (2016), 88–102.
L. Cabon, A. Bertaux, M.N. Brunelle-Navas, I. Nemazanyy, L. Scourzic, L. Delavallee, L. Vela, M. Baritaud, S. Bouchet, C. Lopez, V. Quang Van, K. Garbin, D. Chateau, F. Gilard, M. Sarfati, T. Mercher, O.A. Bernard, S.A. Susin, AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes, Cell Death Differ., 25 (2018) 983–1001.
van Empel, V.P., Bertrand, A.T., van der Nagel, R., Kostin, S., Doevendans, P.A., Crijns, H.J., de Wit, E., Sluiter, W., Ackerman, S.L., De Windt, L.J., Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ. Res. 96 (2005), e92–e101.
van Empel, V.P., Bertrand, A.T., van Oort, R.J., van der Nagel, R., Engelen, M., van Rijen, H.V., Doevendans, P.A., Crijns, H.J., Ackerman, S.L., Sluiter, W., De Windt, L.J., EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 48 (2006), 824–832.
Zhu, C., Wang, X., Huang, Z., Qiu, L., Xu, F., Vahsen, N., Nilsson, M., Eriksson, P.S., Hagberg, H., Culmsee, C., Plesnila, N., Kroemer, G., Blomgren, K., Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ. 14 (2007), 775–784.
Srivastava, S., Banerjee, H., Chaudhry, A., Khare, A., Sarin, A., George, A., Bal, V., Durdik, J.M., Rath, S., Apoptosis-inducing factor regulates death in peripheral T cells. J. Immunol. 179 (2007), 797–803.
Apostolova, N., Cervera, A.M., Victor, V.M., Cadenas, S., Sanjuan-Pla, A., Alvarez-Barrientos, A., Esplugues, J.V., McCreath, K.J., Loss of apoptosis-inducing factor leads to an increase in reactive oxygen species, and an impairment of respiration that can be reversed by antioxidants. Cell Death Differ. 13 (2006), 354–357.
Chinta, S.J., Rane, A., Yadava, N., Andersen, J.K., Nicholls, D.G., Polster, B.M., Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic. Biol. Med. 46 (2009), 939–947.
Chen, Q., Szczepanek, K., Hu, Y., Thompson, J., Lesnefsky, E.J., A deficiency of apoptosis inducing factor (AIF) in Harlequin mouse heart mitochondria paradoxically reduces ROS generation during ischemia-reperfusion. Front. Physiol., 5, 2014, 271.
Stringer, J.R., Larson, J.S., Fischer, J.M., Stringer, S.L., Increased mutation in mice genetically predisposed to oxidative damage in the brain. Mutat. Res. 556 (2004), 127–134.
Van Osch, F.S., Piliguian, M., Hill, K.A., Spontaneous mutation frequency is elevated in skin of harlequin (hq)/Big Blue mice. Mutagenesis 25 (2010), 235–242.
Prtenjaca, A., Hill, K.A., Mutation frequency is not elevated in the cerebellum of harlequin/Big Blue((R)) mice but Class II deletions occur preferentially in young harlequin cerebellum. Mutat. Res. 707 (2011), 53–60.
Lipton, S.A., Bossy-Wetzel, E., Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111 (2002), 147–150.
Brown, D., Yu, B.D., Joza, N., Benit, P., Meneses, J., Firpo, M., Rustin, P., Penninger, J.M., Martin, G.R., Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 9918–9923.
Germain, M., Nguyen, A.P., Khacho, M., Patten, D.A., Screaton, R.A., Park, D.S., Slack, R.S., LKB1-regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction. Hum. Mol. Genet. 22 (2013), 952–962.
Joza, N., Galindo, K., Pospisilik, J.A., Benit, P., Rangachari, M., Kanitz, E.E., Nakashima, Y., Neely, G.G., Rustin, P., Abrams, J.M., Kroemer, G., Penninger, J.M., The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ. 15 (2008), 1009–1018.
Troulinaki, K., Buttner, S., Marsal Cots, A., Maida, S., Meyer, K., Bertan, F., Gioran, A., Piazzesi, A., Fornarelli, A., Nicotera, P., Bano, D., WAH-1/AIF regulates mitochondrial oxidative phosphorylation in the nematode Caenorhabditis elegans. Cell death discovery, 4, 2018, 2.
Kadam, A.A., Jubin, T., Mir, H.A., Begum, R., Potential role of apoptosis inducing factor in evolutionarily significant eukaryote. Dictyostelium Discoideum Survival, Biochim Biophys Acta 1861 (2017), 2942–2955.
Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuan Szklarz, L.K., Schulze-Specking, A., Truscott, K.N., Guiard, B., Meisinger, C., Pfanner, N., Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 23 (2004), 3735–3746.
Naoe, M., Ohwa, Y., Ishikawa, D., Ohshima, C., Nishikawa, S., Yamamoto, H., Endo, T., Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J. Biol. Chem. 279 (2004), 47815–47821.
Terziyska, N., Lutz, T., Kozany, C., Mokranjac, D., Mesecke, N., Neupert, W., Herrmann, J.M., Hell, K., Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett. 579 (2005), 179–184.
Banci, L., Bertini, I., Cefaro, C., Ciofi-Baffoni, S., Gallo, A., Martinelli, M., Sideris, D.P., Katrakili, N., Tokatlidis, K., MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat. Struct. Mol. Biol. 16 (2009), 198–206.
Herrmann, J.M., Riemer, J., The intermembrane space of mitochondria. Antioxid. Redox Signal. 13 (2010), 1341–1358.
Modjtahedi, N., Hangen, E., Gonin, P., Kroemer, G., Metabolic epistasis among apoptosis-inducing factor and the mitochondrial import factor CHCHD4. Cell Cycle 14 (2015), 2743–2747.
Lu, H., Allen, S., Wardleworth, L., Savory, P., Tokatlidis, K., Functional TIM10 chaperone assembly is redox-regulated in vivo. J. Biol. Chem. 279 (2004), 18952–18958.
Curran, S.P., Leuenberger, D., Oppliger, W., Koehler, C.M., The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J. 21 (2002), 942–953.
Sideris, D.P., Petrakis, N., Katrakili, N., Mikropoulou, D., Gallo, A., Ciofi-Baffoni, S., Banci, L., Bertini, I., Tokatlidis, K., A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J. Cell Biol. 187 (2009), 1007–1022.
Koch, J.R., Schmid, F.X., Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem. Biol. 9 (2014), 2049–2057.
Koch, J.R., Schmid, F.X., Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria. Nat. Commun., 5, 2014, 3041.
Peleh, V., Cordat, E., Herrmann, J.M., Mia40 Is a Trans-site Receptor that Drives Protein Import Into the Mitochondrial Intermembrane Space by Hydrophobic Substrate Binding, eLife, 5. 2016.
Banci, L., Bertini, I., Cefaro, C., Cenacchi, L., Ciofi-Baffoni, S., Felli, I.C., Gallo, A., Gonnelli, L., Luchinat, E., Sideris, D., Tokatlidis, K., Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 20190–20195.
Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., Pfanner, N., Importing mitochondrial proteins: machineries and mechanisms. Cell 138 (2009), 628–644.
Chatzi, A., Tokatlidis, K., The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Antioxid. Redox Signal. 19 (2012), 54–62.
Allen, S., Balabanidou, V., Sideris, D.P., Lisowsky, T., Tokatlidis, K., Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 353 (2005), 937–944.
Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., Herrmann, J.M., A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121 (2005), 1059–1069.
Rissler, M., Wiedemann, N., Pfannschmidt, S., Gabriel, K., Guiard, B., Pfanner, N., Chacinska, A., The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J. Mol. Biol. 353 (2005), 485–492.
Banci, L., Bertini, I., Cefaro, C., Ciofi-Baffoni, S., Gajda, K., Felli, I.C., Gallo, A., Pavelkova, A., Kallergi, E., Andreadaki, M., Katrakili, N., Pozidis, C., Tokatlidis, K., An intrinsically disordered domain has a dual function coupled to compartment-dependent redox control. J. Mol. Biol. 425 (2013), 594–608.
Dabir, D.V., Leverich, E.P., Kim, S.K., Tsai, F.D., Hirasawa, M., Knaff, D.B., Koehler, C.M., A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 26 (2007), 4801–4811.
Neal, S.E., Dabir, D.V., Wijaya, J., Boon, C., Koehler, C.M., Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Mol. Biol. Cell 28 (2017), 2773–2785.
Banci, L., Bertini, I., Calderone, V., Cefaro, C., Ciofi-Baffoni, S., Gallo, A., Kallergi, E., Lionaki, E., Pozidis, C., Tokatlidis, K., Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 4811–4816.
Habich, M., Salscheider, S.L., Murschall, L.M., Hoehne, M.N., Fischer, M., Schorn, F., Petrungaro, C., Ali, M., Erdogan, A.J., Abou-Eid, S., Kashkar, H., Dengjel, J., Riemer, J., Vectorial import via a metastable disulfide-linked complex allows for a quality control step and import by the mitochondrial disulfide relay. Cell Rep. 26 (2019), 759–774 (e755).
Fischer, M., Horn, S., Belkacemi, A., Kojer, K., Petrungaro, C., Habich, M., Ali, M., Kuttner, V., Bien, M., Kauff, F., Dengjel, J., Herrmann, J.M., Riemer, J., Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol. Biol. Cell 24 (2013), 2160–2170.
Hofmann, S., Rothbauer, U., Muhlenbein, N., Baiker, K., Hell, K., Bauer, M.F., Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J. Mol. Biol. 353 (2005), 517–528.
Chacinska, A., Guiard, B., Muller, J.M., Schulze-Specking, A., Gabriel, K., Kutik, S., Pfanner, N., Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J. Biol. Chem. 283 (2008), 29723–29729.
Kawano, S., Yamano, K., Naoe, M., Momose, T., Terao, K., Nishikawa, S., Watanabe, N., Endo, T., Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 14403–14407.
Sokol, A.M., Uszczynska-Ratajczak, B., Collins, M.M., Bazala, M., Topf, U., Lundegaard, P.R., Sugunan, S., Guenther, S., Kuenne, C., Graumann, J., Chan, S.S.L., Stainier, D.Y.R., Chacinska, A., Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet., 14, 2018, e1007743.
Petrungaro, C., Zimmermann, K.M., Kuttner, V., Fischer, M., Dengjel, J., Bogeski, I., Riemer, J., The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 Dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab. 22 (2015), 721–733.
Thomas, L.W., Stephen, J.M., Esposito, C., Hoer, S., Antrobus, R., Ahmed, A., Al-Habib, H., Ashcroft, M., CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer & metabolism, 7, 2019, 2.
Heimer, G., Eyal, E., Zhu, X., Ruzzo, E.K., Marek-Yagel, D., Sagiv, D., Anikster, Y., Reznik-Wolf, H., Pras, E., Oz Levi, D., Lancet, D., Ben-Zeev, B., Nissenkorn, A., Mutations in AIFM1 cause an X-linked childhood cerebellar ataxia partially responsive to riboflavin. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society 22 (2018), 93–101.
Wang, B., Li, X., Wang, J., Liu, L., Xie, Y., Huang, S., Pakhrin, P.S., Jin, Q., Zhu, C., Tang, B., Niu, Q., Zhang, R., A novel AIFM1 mutation in a Chinese family with X-linked Charcot-Marie-Tooth disease type 4. Neuromuscul. Disord. 28 (2018), 652–659.
Ghezzi, D., Sevrioukova, I.F., Invernizzi, F., Lamperti, C., Mora, M., D'Adamo, P., Novara, F., Zuffardi, O., Uziel, G., Zeviani, M., Severe X-linked mitochondrial encephalomyopathy associated with a mutation in Apoptosis-inducing factor. Am. J. Hum. Genet. 86 (2010), 639–649.
Sancho, P., Sanchez-Monteagudo, A., Collado, A., Marco-Marin, C., Dominguez-Gonzalez, C., Camacho, A., Knecht, E., Espinos, C., Lupo, V., A newly distal hereditary motor neuropathy caused by a rare AIFM1 mutation. Neurogenetics 18 (2017), 245–250.
Hu, B., Wang, M., Castoro, R., Simmons, M., Dortch, R., Yawn, R., Li, J., A novel missense mutation in AIFM1 results in axonal polyneuropathy and misassembly of OXPHOS complexes. Eur. J. Neurol. 24 (2017), 1499–1506.
Miyake, N., Wolf, N.I., Cayami, F.K., Crawford, J., Bley, A., Bulas, D., Conant, A., Bent, S.J., Gripp, K.W., Hahn, A., Humphray, S., Kimura-Ohba, S., Kingsbury, Z., Lajoie, B.R., Lal, D., Micha, D., Pizzino, A., Sinke, R.J., Sival, D., Stolte-Dijkstra, I., Superti-Furga, A., Ulrick, N., Taft, R.J., Ogata, T., Ozono, K., Matsumoto, N., Neubauer, B.A., Simons, C., Vanderver, A., X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1. Neurogenetics 18 (2017), 185–194.
Mierzewska, H., Rydzanicz, M., Bieganski, T., Kosinska, J., Mierzewska-Schmidt, M., Lugowska, A., Pollak, A., Stawinski, P., Walczak, A., Kedra, A., Obersztyn, E., Szczepanik, E., Ploski, R., Spondyloepimetaphyseal dysplasia with neurodegeneration associated with AIFM1 mutation - a novel phenotype of the mitochondrial disease. Clin. Genet. 91 (2017), 30–37.
Kettwig, M., Schubach, M., Zimmermann, F.A., Klinge, L., Mayr, J.A., Biskup, S., Sperl, W., Gartner, J., Huppke, P., From ventriculomegaly to severe muscular atrophy: expansion of the clinical spectrum related to mutations in AIFM1. Mitochondrion 21 (2015), 12–18.
Zong, L., Guan, J., Ealy, M., Zhang, Q., Wang, D., Wang, H., Zhao, Y., Shen, Z., Campbell, C.A., Wang, F., Yang, J., Sun, W., Lan, L., Ding, D., Xie, L., Qi, Y., Lou, X., Huang, X., Shi, Q., Chang, S., Xiong, W., Yin, Z., Yu, N., Zhao, H., Wang, J., Wang, J., Salvi, R.J., Petit, C., Smith, R.J., Wang, Q., Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J. Med. Genet. 52 (2015), 523–531.
Ardissone, A., Piscosquito, G., Legati, A., Langella, T., Lamantea, E., Garavaglia, B., Salsano, E., Farina, L., Moroni, I., Pareyson, D., Ghezzi, D., A slowly progressive mitochondrial encephalomyopathy widens the spectrum of AIFM1 disorders. Neurology 84 (2015), 2193–2195.
Berger, I., Ben-Neriah, Z., Dor-Wolman, T., Shaag, A., Saada, A., Zenvirt, S., Raas-Rothschild, A., Nadjari, M., Kaestner, K.H., Elpeleg, O., Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol. Genet. Metab. 104 (2011), 517–520.
Diodato, D., Tasca, G., Verrigni, D., D'Amico, A., Rizza, T., Tozzi, G., Martinelli, D., Verardo, M., Invernizzi, F., Nasca, A., Bellacchio, E., Ghezzi, D., Piemonte, F., Dionisi-Vici, C., Carrozzo, R., Bertini, E., A novel AIFM1 mutation expands the phenotype to an infantile motor neuron disease. European Journal of Human Genetics: EJHG 24 (2016), 463–466.
Morton, S.U., Prabhu, S.P., Lidov, H.G.W., Shi, J., Anselm, I., Brownstein, C.A., Bainbridge, M.N., Beggs, A.H., Vargas, S.O., Agrawal, P.B., AIFM1 mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant. Cold Spring Harbor molecular case studies, 3, 2017, a001560.
Pronicka, E., Piekutowska-Abramczuk, D., Ciara, E., Trubicka, J., Rokicki, D., Karkucinska-Wieckowska, A., Pajdowska, M., Jurkiewicz, E., Halat, P., Kosinska, J., Pollak, A., Rydzanicz, M., Stawinski, P., Pronicki, M., Krajewska-Walasek, M., Ploski, R., New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J. Transl. Med., 14, 2016, 174.
Rinaldi, C., Grunseich, C., Sevrioukova, I.F., Schindler, A., Horkayne-Szakaly, I., Lamperti, C., Landoure, G., Kennerson, M.L., Burnett, B.G., Bonnemann, C., Biesecker, L.G., Ghezzi, D., Zeviani, M., Fischbeck, K.H., Cowchock syndrome is associated with a mutation in apoptosis-inducing factor. Am. J. Hum. Genet. 91 (2012), 1095–1102.
Koehler, C.M., The small Tim proteins and the twin Cx3C motif. Trends Biochem. Sci. 29 (2004), 1–4.
Gabriel, K., Milenkovic, D., Chacinska, A., Muller, J., Guiard, B., Pfanner, N., Meisinger, C., Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J. Mol. Biol. 365 (2007), 612–620.
Chatzi, A., Sideris, D.P., Katrakili, N., Pozidis, C., Tokatlidis, K., Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features. FEBS J. 280 (2013), 4960–4969.
Jin, H., Kendall, E., Freeman, T.C., Roberts, R.G., Vetrie, D.L., The human family of Deafness/Dystonia peptide (DDP) related mitochondrial import proteins. Genomics 61 (1999), 259–267.
Koehler, C.M., Leuenberger, D., Merchant, S., Renold, A., Junne, T., Schatz, G., Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 2141–2146.
Hofmann, S., Rothbauer, U., Muhlenbein, N., Neupert, W., Gerbitz, K.D., Brunner, M., Bauer, M.F., The C66W mutation in the deafness dystonia peptide 1 (DDP1) affects the formation of functional DDP1.TIM13 complexes in the mitochondrial intermembrane space. J. Biol. Chem. 277 (2002), 23287–23293.
Mordas, A., Tokatlidis, K., The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48 (2015), 2191–2199.
Bode, M., Longen, S., Morgan, B., Peleh, V., Dick, T.P., Bihlmaier, K., Herrmann, J.M., Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid. Redox Signal. 18 (2013), 1597–1612.
Szklarczyk, R., Wanschers, B.F., Nabuurs, S.B., Nouws, J., Nijtmans, L.G., Huynen, M.A., NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett. 585 (2011), 737–743.
Greber, B.J., Ban, N., Structure and function of the mitochondrial ribosome. Annu. Rev. Biochem. 85 (2016), 103–132.
Englmeier, R., Pfeffer, S., Forster, F., Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25 (2017), 1574–1581.
Demers-Lamarche, J., Guillebaud, G., Tlili, M., Todkar, K., Belanger, N., Grondin, M., Nguyen, A.P., Michel, J., Germain, M., Loss of mitochondrial function impairs lysosomes. J. Biol. Chem. 291 (2016), 10263–10276.
Chatzi, A., Tokatlidis, K., The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Antioxid. Redox Signal. 19 (2013), 54–62.
Terziyska, N., Grumbt, B., Bien, M., Neupert, W., Herrmann, J.M., Hell, K., The sulfhydryl oxidase Erv1 is a substrate of the Mia40-dependent protein translocation pathway. FEBS Lett. 581 (2007), 1098–1102.
Friederich, M.W., Erdogan, A.J., Coughlin, C.R. 2nd, Elos, M.T., Jiang, H., O'Rourke, C.P., Lovell, M.A., Wartchow, E., Gowan, K., Chatfield, K.C., Chick, W.S., Spector, E.B., Van Hove, J.L.K., Riemer, J., Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly. Hum. Mol. Genet. 26 (2017), 702–716.
E.R. Weber, T. Hanekamp, P.E. Thorsness, Biochemical and functional analysis of the YME1 gene product, an ATP and zinc-dependent mitochondrial protease from S. cerevisiae, Mol Biol Cell, 7 (1996) 307–317.
Leonhard, K., Guiard, B., Pellecchia, G., Tzagoloff, A., Neupert, W., Langer, T., Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5 (2000), 629–638.
Kominsky, D.J., Brownson, M.P., Updike, D.L., Thorsness, P.E., Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes. Genetics 162 (2002), 1595–1604.
Dunn, C.D., Lee, M.S., Spencer, F.A., Jensen, R.E., A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. Mol. Biol. Cell 17 (2006), 213–226.
Koppen, M., Langer, T., Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42 (2007), 221–242.
Graef, M., Seewald, G., Langer, T., Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol. Cell. Biol. 27 (2007), 2476–2485.
Dunn, C.D., Tamura, Y., Sesaki, H., Jensen, R.E., Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. Mol. Biol. Cell 19 (2008), 5387–5397.
Potting, C., Wilmes, C., Engmann, T., Osman, C., Langer, T., Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J. 29 (2010), 2888–2898.
Elliott, L.E., Saracco, S.A., Fox, T.D., Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase. Genetics 190 (2012), 559–567.
Baker, M.J., Mooga, V.P., Guiard, B., Langer, T., Ryan, M.T., Stojanovski, D., Impaired folding of the mitochondrial small TIM chaperones induces clearance by the i-AAA protease. J. Mol. Biol. 424 (2012), 227–239.
Spiller, M.P., Guo, L., Wang, Q., Tran, P., Lu, H., Mitochondrial Tim9 Protects Tim10 From Degradation by the Protease Yme1, Bioscience Reports, 35. 2015.
Allen, S., Lu, H., Thornton, D., Tokatlidis, K., Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. J. Biol. Chem. 278 (2003), 38505–38513.
Leonhard, K., Stiegler, A., Neupert, W., Langer, T., Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398 (1999), 348–351.
Schreiner, B., Westerburg, H., Forne, I., Imhof, A., Neupert, W., Mokranjac, D., Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol. Biol. Cell 23 (2012), 4335–4346.
Vogtle, F.N., Burkhart, J.M., Rao, S., Gerbeth, C., Hinrichs, J., Martinou, J.C., Chacinska, A., Sickmann, A., Zahedi, R.P., Meisinger, C., Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteomics 11 (2012), 1840–1852.
Bragoszewski, P., Wasilewski, M., Sakowska, P., Gornicka, A., Bottinger, L., Qiu, J., Wiedemann, N., Chacinska, A., Retro-translocation of mitochondrial intermembrane space proteins. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 7713–7718.
Bragoszewski, P., Gornicka, A., Sztolsztener, M.E., Chacinska, A., The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol. Cell. Biol. 33 (2013), 2136–2148.
Koene, S., Smeitink, J., Mitochondrial medicine: entering the era of treatment. J. Intern. Med. 265 (2009), 193–209.
Modjtahedi, N., Giordanetto, F., Kroemer, G., A human mitochondriopathy caused by AIF mutation. Cell Death Differ. 17 (2010), 1525–1528.
Villanueva, R., Romero-Tamayo, S., Laplaza, R., Martinez-Olivan, J., Velazquez-Campoy, A., Sancho, J., Ferreira, P., Medina, M., Redox- and ligand binding-dependent conformational ensembles in the human apoptosis-inducing factor regulate its pro-life and cell death functions. Antioxid. Redox Signal. 30 (2019), 2013–2029.
Wischhof, L., Gioran, A., Sonntag-Bensch, D., Piazzesi, A., Stork, M., Nicotera, P., Bano, D., A disease-associated Aifm1 variant induces severe myopathy in knockin mice. Molecular metabolism 13 (2018), 10–23.
Sorrentino, L., Cossu, F., Milani, M., Aliverti, A., Mastrangelo, E., Structural bases of the altered catalytic properties of a pathogenic variant of apoptosis inducing factor. Biochem. Biophys. Res. Commun. 490 (2017), 1011–1017.
Jeong, E.G., Lee, J.W., Soung, Y.H., Nam, S.W., Kim, S.H., Lee, J.Y., Yoo, N.J., Lee, S.H., Immunohistochemical and mutational analysis of apoptosis-inducing factor (AIF) in colorectal carcinomas. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 114 (2006), 867–873.
Lee, J.W., Jeong, E.G., Soung, Y.H., Kim, S.Y., Nam, S.W., Kim, S.H., Lee, J.Y., Yoo, N.J., Lee, S.H., Immunohistochemical analysis of apoptosis-inducing factor (AIF) expression in gastric carcinomas. Pathol. Res. Pract. 202 (2006), 497–501.
Troutaud, D., Petit, B., Bellanger, C., Marin, B., Gourin-Chaury, M.P., Petit, D., Olivrie, A., Feuillard, J., Jauberteau, M.O., Bordessoule, D., Prognostic significance of BAD and AIF apoptotic pathways in diffuse large B-cell lymphoma. Clinical lymphoma, myeloma & leukemia 10 (2010), 118–124.
Li, S., Wan, M., Cao, X., Ren, Y., Expression of AIF and HtrA2/Omi in small lymphocytic lymphoma and diffuse large B-cell lymphoma. Arch Pathol Lab Med 135 (2011), 903–908.
Skyrlas, A., Hantschke, M., Passa, V., Gaitanis, G., Malamou-Mitsi, V., Bassukas, I.D., Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp. Dermatol. 20 (2011), 674–676.
Lewis, E.M., Wilkinson, A.S., Jackson, J.S., Mehra, R., Varambally, S., Chinnaiyan, A.M., Wilkinson, J.C., The enzymatic activity of apoptosis-inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells. J. Biol. Chem. 287 (2012), 43862–43875.
Fan, T., Tian, F., Yi, S., Ke, Y., Han, S., Zhang, L., Liu, H., Implications of Bit1 and AIF overexpressions in esophageal squamous cell carcinoma. Tumour Biol. 35 (2014), 519–527.
Rao, S., Mondragon, L., Pranjic, B., Hanada, T., Stoll, G., Kocher, T., Zhang, P., Jais, A., Lercher, A., Bergthaler, A., Schramek, D., Haigh, K., Sica, V., Leduc, M., Modjtahedi, N., Pai, T.P., Onji, M., Uribesalgo, I., Hanada, R., Kozieradzki, I., Koglgruber, R., Cronin, S.J., She, Z., Quehenberger, F., Popper, H., Kenner, L., Haigh, J.J., Kepp, O., Rak, M., Cai, K., Kroemer, G., Penninger, J.M., AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Res. 29 (2019), 579–591.
Scott, A.J., Wilkinson, A.S., Wilkinson, J.C., Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells. BMC Cancer 16 (2016), 286–300.
Telot, L., Rousseau, E., Lesuisse, E., Garcia, C., Morlet, B., Leger, T., Camadro, J.M., Serre, V., Quantitative proteomics in Friedreich's ataxia B-lymphocytes: a valuable approach to decipher the biochemical events responsible for pathogenesis. Biochimica et Biophysica Acta. Molecular Basis of Disease 1864 (2018), 997–1009.
Yang, J., Staples, O., Thomas, L.W., Briston, T., Robson, M., Poon, E., Simoes, M.L., El-Emir, E., Buffa, F.M., Ahmed, A., Annear, N.P., Shukla, D., Pedley, B.R., Maxwell, P.H., Harris, A.L., Ashcroft, M., Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J. Clin. Invest. 122 (2012), 600–611.
Zhuang, J., Wang, P.Y., Huang, X., Chen, X., Kang, J.G., Hwang, P.M., Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 17356–17361.
Park, J.H., Zhuang, J., Li, J., Hwang, P.M., p53 as guardian of the mitochondrial genome. FEBS Lett. 590 (2016), 924–934.
Thomas, L.W., Staples, O., Turmaine, M., Ashcroft, M., CHCHD4 regulates intracellular oxygenation and perinuclear distribution of mitochondria. Front. Oncol., 7, 2017, 71.
Briston, T., Stephen, J.M., Thomas, L.W., Esposito, C., Chung, Y.L., Syafruddin, S.E., Turmaine, M., Maddalena, L.A., Greef, B., Szabadkai, G., Maxwell, P.H., Vanharanta, S., Ashcroft, M., VHL-mediated regulation of CHCHD4 and mitochondrial function. Front. Oncol., 8, 2018, 388.
Thomas, L.W., Esposito, C., Stephen, J.M., Costa, A.S.H., Frezza, C., Blacker, T.S., Szabadkai, G., Ashcroft, M., CHCHD4 regulates tumour proliferation and EMT-related phenotypes, through respiratory chain-mediated metabolism. Cancer & metabolism, 7, 2019, 7.
Mossmann, D., Park, S., Hall, M.N., mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18 (2018), 744–757.
Thasler, W.E., Schlott, T., Thelen, P., Hellerbrand, C., Bataille, F., Lichtenauer, M., Schlitt, H.J., Jauch, K.W., Weiss, T.S., Expression of augmenter of liver regeneration (ALR) in human liver cirrhosis and carcinoma. Histopathology 47 (2005), 57–66.
Cao, Y., Fu, Y.L., Yu, M., Yue, P.B., Ge, C.H., Xu, W.X., Zhan, Y.Q., Li, C.Y., Li, W., Wang, X.H., Wang, Z.D., Li, Y.H., Yang, X.M., Human augmenter of liver regeneration is important for hepatoma cell viability and resistance to radiation-induced oxidative stress. Free Radic. Biol. Med. 47 (2009), 1057–1066.
Di Fonzo, A., Ronchi, D., Lodi, T., Fassone, E., Tigano, M., Lamperti, C., Corti, S., Bordoni, A., Fortunato, F., Nizzardo, M., Napoli, L., Donadoni, C., Salani, S., Saladino, F., Moggio, M., Bresolin, N., Ferrero, I., Comi, G.P., The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am. J. Hum. Genet. 84 (2009), 594–604.
Polimeno, L., Pesetti, B., Lisowsky, T., Iannone, F., Resta, L., Giorgio, F., Mallamaci, R., Buttiglione, M., Santovito, D., Vitiello, F., Mancini, M.E., Francavilla, A., Protective effect of augmenter of liver regeneration on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 43 (2009), 865–875.
Polimeno, L., Pesetti, B., De Santis, F., Resta, L., Rossi, R., De Palma, A., Girardi, B., Amoruso, A., Francavilla, A., Decreased expression of the augmenter of liver regeneration results in increased apoptosis and oxidative damage in human-derived glioma cells. Cell Death Dis., 3, 2012, e289.
Shen, Y., Liu, Q., Sun, H., Li, X., Wang, N., Guo, H., Protective effect of augmenter of liver regeneration on vincristine-induced cell death in Jurkat T leukemia cells. Int. Immunopharmacol. 17 (2013), 162–167.
Gandhi, C.R., Chaillet, J.R., Nalesnik, M.A., Kumar, S., Dangi, A., Demetris, A.J., Ferrell, R., Wu, T., Divanovic, S., Stankeiwicz, T., Shaffer, B., Stolz, D.B., Harvey, S.A., Wang, J., Starzl, T.E., Liver-specific deletion of augmenter of liver regeneration accelerates development of steatohepatitis and hepatocellular carcinoma in mice. Gastroenterology 148 (2015), 379–391.
E. Gatzidou, M. Mantzourani, C. Giaginis, A. Giagini, E. Patsouris, G. Kouraklis, S. Theocharis, Augmenter of liver regeneration gene expression in human colon cancer cell lines and clinical tissue samples, Journal of B.U.ON.: official journal of the Balkan Union of Oncology, 20 (2015) 84–91.
Maehara, Y., Fernandez-Checa, J.C., Augmenter of liver regeneration links mitochondrial function to steatohepatitis and hepatocellular carcinoma. Gastroenterology 148 (2015), 285–288.
Nalesnik, M.A., Gandhi, C.R., Starzl, T.E., Augmenter of liver regeneration: a fundamental life protein. Hepatology 66 (2017), 266–270.
Nguyen, K.H., Nguyen, A.H., Dabir, D.V., Clinical implications of augmenter of liver regeneration in cancer: a systematic review. Anticancer Res. 37 (2017), 3379–3383.
Nambot, S., Gavrilov, D., Thevenon, J., Bruel, A.L., Bainbridge, M., Rio, M., Goizet, C., Rotig, A., Jaeken, J., Niu, N., Xia, F., Vital, A., Houcinat, N., Mochel, F., Kuentz, P., Lehalle, D., Duffourd, Y., Riviere, J.B., Thauvin-Robinet, C., Beaudet, A.L., Faivre, L., Further delineation of a rare recessive encephalomyopathy linked to mutations in GFER thanks to data sharing of whole exome sequencing data. Clin. Genet. 92 (2017), 188–198.
Huang, L.L., Liao, X.H., Sun, H., Jiang, X., Liu, Q., Zhang, L., Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis. J. Cell. Mol. Med. 23 (2019), 4153–4164.
N. Plesnila, C. Culmsee, Involvement of Apoptosis-Inducing Factor (AIF) in Neuronal Cell Death Following Cerebral Ischemia., in: F. D. (Ed.) Acute Neuronal Injury., Springer, Cham, 2018.
Oxler, E.M., Dolga, A., Culmsee, C., AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis 17 (2012), 1027–1038.
Sun, Y., Li, T., Xie, C., Xu, Y., Zhou, K., Rodriguez, J., Han, W., Wang, X., Kroemer, G., Modjtahedi, N., Blomgren, K., Zhu, C., Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia. Cell Death Dis., 8, 2017, e2781.