[en] Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Cissé, Madi Y.
Pyrdziak, Samuel
Firmin, Nelly
Gayte, Laurie
Heuillet, Maud
Bellvert, Floriant
Fuentes, Maryse
Delpech, Hélène
Riscal, Romain
ARENA, Giuseppe ; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.
J. Verweij, L. H. Baker, Future treatment of soft tissue sarcomas will be driven by histological subtype and molecular aberrations. Eur. J. Cancer 46, 863-868 (2010).
W. T. A. van der Graaf, J.-Y. Blay, S. P. Chawla, D.-W. Kim, B. Bui-Nguyen, P. G. Casali, P. Schöffski, M. Aglietta, A. P. Staddon, Y. Beppu, A. Le Cesne, H. Gelderblom, I. R. Judson, N. Araki, M. Ouali, S. Marreaud, R. Hodge, M. R. Dewji, C. Coens, G. D. Demetri, C. D. Fletcher, A. P. D. Tos, P. Hohenberger; EORTC Soft Tissue; Bone Sarcoma Group; PALETTE study group, Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379, 1879-1886 (2012).
M. Saponara, S. Stacchiotti, A. Gronchi, Pharmacological therapies for liposarcoma. Expert. Rev. Clin. Pharmacol. 10, 361-377 (2017).
A. M. Crago, S. Singer, Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr. Opin. Oncol. 23, 373-378 (2011).
F. Ducimetière, A. Lurkin, D. Ranchère-Vince, A.-V. Decouvelaere, M. Péoc'h, L. Istier, P. Chalabreysse, C. Muller, L. Alberti, P.-P. Bringuier, J.-Y. Scoazec, A.-M. Schott, C. Bergeron, D. Cellier, J.-Y. Blay, I. Ray-Coquard, Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLOS ONE 6, e20294 (2011).
ESMO/European Sarcoma Network Working Group, Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25 (suppl. 3), iii102-iii112 (2014).
A. Italiano, D. Garbay, A. Cioffi, R. G. Maki, B. Bui, Advanced pleomorphic liposarcomas: Clinical outcome and impact of chemotherapy. Ann. Oncol. 23, 2205-2206 (2012).
S. Lokka, A. H. Scheel, S. Dango, K. Schmitz, R. Hesterberg, J. Rüschoff, H.-U. Schildhaus, Challenging dedifferentiated liposarcoma identified by MDM2-amplification, a report of two cases. BMC Clin. Pathol. 14, 36 (2014).
G. Mastrangelo, J.-M. Coindre, F. Ducimetière, A. P. Dei Tos, E. Fadda, J.-Y. Blay, A. Buja, U. Fedeli, L. Cegolon, A. Frasson, D. Ranchère-Vince, C. Montesco, I. Ray-Coquard, C. R. Rossi, Incidence of soft tissue sarcoma and beyond: A population-based prospective study in 3 European regions. Cancer 118, 5339-5348 (2012).
J.-C. Marine, G. Lozano, Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93-102 (2010).
R. M. de Oca Luna, D. S. Wagner, G. Lozano, Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206 (1995).
S. N. Jones, A. E. Roe, L. A. Donehower, A. Bradley, Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208 (1995).
A. Bouska, C. M. Eischen, Mdm2 affects genome stability independent of p53. Cancer Res. 69, 1697-1701 (2009).
T. Léveillard, B. Wasylyk, The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J. Biol. Chem. 272, 30651-30661 (1997).
S. Bohlman, J. J. Manfredi, p53-independent effects of Mdm2. Subcell. Biochem. 85, 235-246 (2014).
M. Wienken, A. Dickmanns, A. Nemajerova, D. Kramer, Z. Najafova, M. Weiss, O. Karpiuk, M. Kassem, Y. Zhang, G. Lozano, S. A. Johnsen, U. M. Moll, X. Zhang, M. Dobbelstein, MDM2 associates with polycomb repressor complex 2 and enhances stemness-promoting chromatin modifications independent of p53. Mol. Cell 61, 68-83 (2016).
I. Klusmann, K. Wohlberedt, A. Magerhans, F. Teloni, J. O. Korbel, M. Altmeyer, M. Dobbelstein, Chromatin modifiers Mdm2 and RNF2 prevent RNA:DNA hybrids that impair DNA replication. Proc. Natl. Acad. Sci. U.S.A. 115, E11311-E11320 (2018).
K. P. Feeley, C. M. Adams, R. Mitra, C. M. Eischen, Mdm2 is required for survival and growth of p53-deficient cancer cells. Cancer Res. 77, 3823-3833 (2017).
R. Riscal, E. Schrepfer, G. Arena, M. Y. Cissé, F. Bellvert, M. Heuillet, F. Rambow, E. Bonneil, F. Sabourdy, C. Vincent, I. Ait-Arsa, T. Levade, P. Thibaut, J.-C. Marine, J.-C. Portais, J.-E. Sarry, L. Le Cam, L. K. Linares, Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53. Mol. Cell 62, 890-902 (2016).
O. D. K. Maddocks, C. R. Berkers, S. M. Mason, L. Zheng, K. Blyth, E. Gottlieb, K. H. Vousden, Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542-546 (2013).
M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A. L. Souza, R. Kafri, M. W. Kirschner, C. B. Clish, V. K. Mootha, Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040-1044 (2012).
J. W. Locasale, Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583 (2013).
J. W. Locasale, A. R. Grassian, T. Melman, C. A. Lyssiotis, K. R. Mattaini, A. J. Bass, G. Heffron, C. M. Metallo, T. Muranen, H. Sharfi, A. T. Sasaki, D. Anastasiou, E. Mullarky, N. I. Vokes, M. Sasaki, R. Beroukhim, G. Stephanopoulos, A. H. Ligon, M. Meyerson, A. L. Richardson, L. Chin, G. Wagner, J. M. Asara, J. S. Brugge, L. C. Cantley, M. G. Vander Heiden, Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874 (2011).
R. Possemato, K. M. Marks, Y. D. Shaul, M. E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H.-K. Woo, H. G. Jang, A. K. Jha, W. W. Chen, F. G. Barrett, N. Stransky, Z.-Y. Tsun, G. S. Cowley, J. Barretina, N. Y. Kalaany, P. P. Hsu, K. Ottina, A. M. Chan, B. Yuan, L. A. Garraway, D. E. Root, M. Mino-Kenudson, E. F. Brachtel, E. M. Driggers, D. M. Sabatini, Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350 (2011).
I. Ray-Coquard, J.-Y. Blay, A. Italiano, A. Le Cesne, N. Penel, J. Zhi, F. Heil, R. Rueger, B. Graves, M. Ding, D. Geho, S. A. Middleton, L. T. Vassilev, G. L. Nichols, B. N. Bui, Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: An exploratory proof-of-mechanism study. Lancet Oncol. 13, 1133-1140 (2012).
Q. Li, G. Lozano, Molecular pathways: Targeting Mdm2 and Mdm4 in cancer therapy. Clin. Cancer Res. 19, 34-41 (2013).
A. Y. Saiki, S. Caenepeel, E. Cosgrove, C. Su, M. Boedigheimer, J. D. Oliner, Identifying the determinants of response to MDM2 inhibition. Oncotarget 6, 7701-7712 (2015).
K. H. Khoo, K. K. Hoe, C. S. Verma, D. P. Lane, Drugging the p53 pathway: Understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217-236 (2014).
L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848 (2004).
W. Wang, J.-J. Qin, S. Voruganti, M.-H. Wang, H. Sharma, S. Patil, J. Zhou, H. Wang, D. Mukhopadhyay, J. K. Buolamwini, R. Zhang, Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology 147, 893-902.e2 (2014).
G. Arena, M. Y. Cissé, S. Pyrdziak, L. Chatre, R. Riscal, M. Fuentes, J. J. Arnold, M. Kastner, L. Gayte, C. Bertrand-Gaday, K. Nay, C. Angebault-Prouteau, K. Murray, B. Chabi, C. Koechlin-Ramonatxo, B. Orsetti, C. Vincent, F. Casas, J.-C. Marine, S. Etienne-Manneville, F. Bernex, A. Lombès, C. E. Cameron, H. Dubouchaud, M. Ricchetti, L. K. Linares, L. Le Cam, Mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol. Cell 69, 594-609.e8 (2018).
M. K. Zeman, K. A. Cimprich, Causes and consequences of replication stress. Nat. Cell Biol. 16, 2-9 (2014).
M. A. Reid, A. E. Allen, S. Liu, M. V. Liberti, P. Liu, X. Liu, Z. Dai, X. Gao, Q. Wang, Y. Liu, L. Lai, J. W. Locasale, Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat. Commun. 9, 5442 (2018).
G. E. Abdelkarim, K. Gertz, C. Harms, J. Katchanov, U. Dirnagl, C. Szabó, M. Endres, Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med. 7, 255-260 (2001).
S. A. Andrabi, T. M. Dawson, V. L. Dawson, Mitochondrial and nuclear cross talk in cell death: Parthanatos. Ann. N. Y. Acad. Sci. U.S.A. 1147, 233-241 (2008).
V. Sica, J. M. Bravo-San Pedro, V. Izzo, J. Pol, S. Pierredon, D. Enot, S. Durand, N. Bossut, A. Chery, S. Souquere, G. Pierron, E. Vartholomaiou, N. Zamzami, T. Soussi, A. Sauvat, L. Mondragón, O. Kepp, L. Galluzzi, J.-C. Martinou, H. Hess-Stumpp, K. Ziegelbauer, G. Kroemer, M. C. Maiuri, Lethal poisoning of cancer cells by respiratory chain inhibition plus dimethyl α-ketoglutarate. Cell Rep. 27, 820-834.e9 (2019).
P. Chène, Inhibition of the p53-MDM2 interaction: Targeting a protein-protein interface. Mol. Cancer Res. 2, 20-28 (2004).
L. K. Boroughs, R. J. DeBerardinis, Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359 (2015).
M. Lacroix, R. Riscal, G. Arena, L. K. Linares, L. Le Cam, Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 33, 2-22 (2019).
M. Maguire, P. C. Nield, T. Devling, R. E. Jenkins, B. K. Park, R. Polański, N. Vlatković, M. T. Boyd, MDM2 regulates dihydrofolate reductase activity through monoubiquitination. Cancer Res. 68, 3232-3242 (2008).
L. Way, J. Faktor, P. Dvorakova, J. Nicholson, B. Vojtesek, D. Graham, K. L. Ball, T. Hupp, Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3. Proteomics 16, 2327-2344 (2016).
R. Elkholi, I. Abraham-Enachescu, A. P. Trotta, C. Rubio-Patiño, J. N. Mohammed, M. P. A. Luna-Vargas, J. D. Gelles, J. R. Kaminetsky, M. N. Serasinghe, C. Zou, S. Ali, G. P. McStay, C. M. Pfleger, J. E. Chipuk, MDM2 integrates cellular respiration and apoptotic signaling through NDUFS1 and the mitochondrial network. Mol. Cell 74, 452-465.e7 (2019).
A. M. Olsen, B. L. Eisenberg, N. B. Kuemmerle, A. J. Flanagan, P. M. Morganelli, P. S. Lombardo, J. V. Swinnen, W. B. Kinlaw, Fatty acid synthesis is a therapeutic target in human liposarcoma. Int. J. Oncol. 36, 1309-1314 (2010).
D. Braas, E. Ahler, B. Tam, D. Nathanson, M. Riedinger, M. R. Benz, K. B. Smith, F. C. Eilber, O. N. Witte, W. D. Tap, H. Wu, H. R. Christofk, Metabolomics strategy reveals subpopulation of liposarcomas sensitive to gemcitabine treatment. Cancer Discov. 2, 1109-1117 (2012).
A. A. Fatokun, V. L. Dawson, T. M. Dawson, Parthanatos: Mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171, 2000-2016 (2014).