Article (Périodiques scientifiques)
Melt Instability Identification Using Unsupervised Machine Learning Algorithms
Gansen, Alex; Hennicker, Julian; Sill, Clemens et al.
2023In Macromolecular Materials and Engineering, p. 2200628
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
10.1002.mame.202200628.pdf
Postprint Éditeur (13.38 MB)
Télécharger

This is an open access article under the terms of the Creative Commons Attribution license.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In industrial extrusion processes, increasing shear rates can lead to higher production rates. However, at high shear rates, extruded polymers and polymer compounds often exhibit melt instabilities ranging from stick-slip to sharkskin to gross melt fracture. These instabilities result in challenges to meet the specifications on the extrudate shape. Starting with an existing published data set on melt instabilities in polymer extrusion, we assess the suitability of clustering, unsupervised machine learning algorithms combined with feature selection, to extract and identify hidden and important features from this data set, and their possible relationship with melt instabilities. The data set consists of both intrinsic features of the polymer as well as extrinsic features controlled and measured during an extrusion experiment. Using a range of commonly available clustering algorithms, it is demonstrated that the features related to only the intrinsic properties of the data set can be reliably divided into two clusters, and that in turn, these two clusters may be associated with either the stick-slip or sharkskin instability. Furthermore, using a feature ranking on both the intrinsic and extrinsic features of the data set, it is shown that the intrinsic properties of molecular weight and polydispersity are the strongest indicators of clustering.
Disciplines :
Science des matériaux & ingénierie
Physique
Auteur, co-auteur :
Gansen, Alex
Hennicker, Julian
Sill, Clemens
Dheur, Jean
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
BALLER, Jörg ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Melt Instability Identification Using Unsupervised Machine Learning Algorithms
Date de publication/diffusion :
2023
Titre du périodique :
Macromolecular Materials and Engineering
ISSN :
1438-7492
eISSN :
1439-2054
Maison d'édition :
John Wiley & Sons, Weinheim, Royaume-Uni
Pagination :
2200628
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Physics and Materials Science
Projet FnR :
FNR14263566 - Enhancement Of Extruder Modelling With A Data-driven Approach, 2019 (01/02/2020-31/01/2022) - Jörg Baller
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 27 mars 2023

Statistiques


Nombre de vues
196 (dont 4 Unilu)
Nombre de téléchargements
70 (dont 2 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
citations OpenAlex
 
2
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu