[en] In industrial extrusion processes, increasing shear rates can lead to higher production rates. However, at high shear rates, extruded polymers and polymer compounds often exhibit melt instabilities ranging from stick-slip to sharkskin to gross melt fracture. These instabilities result in challenges to meet the specifications on the extrudate shape. Starting with an existing published data set on melt instabilities in polymer extrusion, we assess the suitability of clustering, unsupervised machine learning algorithms combined with feature selection, to extract and identify hidden and important features from this data set, and their possible relationship with melt instabilities. The data set consists of both intrinsic features of the polymer as well as extrinsic features controlled and measured during an extrusion experiment. Using a range of commonly available clustering algorithms, it is demonstrated that the features related to only the intrinsic properties of the data set can be reliably divided into two clusters, and that in turn, these two clusters may be associated with either the stick-slip or sharkskin instability. Furthermore, using a feature ranking on both the intrinsic and extrinsic features of the data set, it is shown that the intrinsic properties of molecular weight and polydispersity are the strongest indicators of clustering.
Disciplines :
Materials science & engineering Physics
Author, co-author :
Gansen, Alex
Hennicker, Julian
Sill, Clemens
Dheur, Jean
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
BALLER, Jörg ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
Melt Instability Identification Using Unsupervised Machine Learning Algorithms
Publication date :
2023
Journal title :
Macromolecular Materials and Engineering
ISSN :
1438-7492
eISSN :
1439-2054
Publisher :
John Wiley & Sons, Weinheim, United Kingdom
Pages :
2200628
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences Physics and Materials Science
FnR Project :
FNR14263566 - Enhancement Of Extruder Modelling With A Data-driven Approach, 2019 (01/02/2020-31/01/2022) - Jörg Baller
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J.-F. Agassant, D. R. Arda, C. Combeaud, A. Merten, H. Muenstedt, M. R. Mackley, L. Robert, B. Vergnes, Int. Polym. Process. 2006, 21, 239.
B. Vergnes, Int. Polym. Process. 2015, 30, 3.
S. Filipe, I. Vittorias, M. Wilhelm, Macromol. Mater. Eng. 2008, 293, 57.
D. E. Rumelhart, J. L. McClelland, in Learning Internal Representations by Error Propagation, MIT press, Cambridge, MA 1987, pp. 318–362.
G. V. Cybenko, Math. Control, Signals Syst. 1989, 2, 303.
H. J. Kelley, ARS J. 1960, 30, 947.
A. E. Bryson, in Proc. Harvard University Symp. on Digital Computers and Their Applications, vol. 72, 1961, p. 22.
S. Dreyfus, J. Math. Anal. Appl. 1962, 5, 30.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, et al., Proc. of the 12th USENIX Conf. on Operating Systems Design and Implementation, USENIX Association, USA 2015, pp. 265–283. https://www.tensorflow.org/, Software available from tensorflow.org.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825.
A. Géron, Hand-On Machine Learning with Scikit-Leaarn, Keras, and Tensorflow, 2nd ed., O'Reilly Media, Inc, Sebastopol, CA 2019.
B. Sahoo, S. De, B. Meikap, Int. J. Min. Sci. Technol. 2017, 27, 379.
A. R. Shaik, W. AlAmeri, A. AlSumaiti, M. Muhammad, N. C. Thomas, presented at Abu Dhabi Int. Petroleum Exhibition and Conf., Society of Petroleum Engineers, Abu Dhabi, UAE, November 2019. https://doi.org/10.2118/197166-ms.
A. S. Alqahtani, Master's Thesis, The University of Texas at Austin 2019.
Y. Li, S. Tang, B. C. Abberton, M. Kröger, C. Burkhart, B. Jiang, G. J. Papakonstantopoulos, M. Poldneff, W. K. Liu, Polymer 2012, 53, 5935.
Z. Tariq, M. Murtaza, M. Mahmoud, ACS Omega 2020, 5, 17646.
Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, W. Andreoni, Phys. Rev. B 2012, 85, 104104.
M. E. Abbassi, J. Overbeck, O. Braun, M. Calame, H. S. J. van der Zant, M. L. Perrin, Commun. Phys. 2021, 4, 50.
C. Lopez, S. Tucker, T. Salameh, C. Tucker, J. Biomed. Inf. 2018, 85, 30.
M. Mjahed, Nucl. Instrum. Methods Phys. Res., Sect. A 2006, 559, 199.
Q. Wei, R. G. Melko, J. Z. Y. Chen, Phys. Rev. E 2017, 95, 032504.
Q. Parker, D. Perera, Y. W. Li, T. Vogel, Phys. Rev. E 2022, 105, 035304.
D. Bhattacharya, T. K. Patra, Macromolecules 2021, 54, 3065.
R. Ewoldt, A. Hosoi, G. McKinley, Annu. Trans. Nord. Rheol. Soc. 2007, 15, 3.
M. Wilhelm, Macromol. Mater. Eng. 2002, 287.
H. Palza, I. F. Naue, S. Filipe, A. Becker, J. Sunder, A. Göttfert, M. Wilhelm, Kautsch. Gummi Kunstst. 2010, 63, 456.
H. Palza, S. Filipe, I. F. Naue, M. Wilhelm, Polymer 2010, 51, 522.
I. F. C. Naue, R. Kádár, M. Wilhelm, Macromol. Mater. Eng. 2015, 300, 1141.
H. Palza, I. F. C. Naue, M. Wilhelm, Macromol. Rapid Commun. 2009, 30, 1799.
A. Gansen, M. Rehor, C. Sill, P. Polinska, J. Dheur, J. Hale, J. Baller, J. Appl. Polym. Sci. 2020, 137, 48806.
I. F. Naue, Ph.D. Thesis, Institut für Technische Chemie und Polymerchemie Karlsruhe, Karlsruhe, Baden-Württemberg 2013.
Datacamp, www.datacamp.com/community/tutorials/feature-selection-python (accessed: October 2021).
F. Nielsen, in Introduction to HPC with MPI for Data Science, Undergraduate Topics in Computer Science, Springer International Publishing, Berlin 2016, pp. 195–211.
S. Lloyd, Bell Telephone Laboratories Paper 1957.
J. MacQueen, IEEE Transactions Information Theory 1982, 28, 129.
N. S. Chauhan, Machine Learning, KDnuggets, www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html (accessed: March 2021).
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, in Proc. of the Second Int. Conf. on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, Palo Alto, CA 1996,pp. 226–231.
D. P. G. J. McLachlan, Finite Mixture Models, John Wiley & Sons, Hoboken, NJ 2000.