[en] The high-speed water jet is the momentum source in an Abrasive Water Jet Cutting Nozzle. This momentum is transferred to the abrasive particles & the air within the nozzle. This leads to turbulent & complex particle-laden flow in the nozzle. These flow conditions can influence particle impacts on the nozzle, thus influencing erosion. Hence it is imperative that this complex particle-laden flow is captured correctly. The momentum exchange can be directly from the water jet to the particles or indirectly through the airflow. In this work, we investigate these fluid-particle momentum exchanges. Our prototype uses preCICE for volumetric coupling of XDEM (for the particle motion), & OpenFOAM (for the fluid). XDEM uses fluid flow conditions to compute the forces acting on particles. XDEM computes the particle momentum source that is injected into the fluid solver. The results of the coupled simulation align with literature & can be extended to include the FEM component for erosion predictions.
Research center :
ULHPC - University of Luxembourg: High Performance Computing LuXDEM - University of Luxembourg: Luxembourg XDEM Research Centre
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Computer science
Author, co-author :
ADHAV, Prasad ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
BESSERON, Xavier ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
PETERS, Bernhard ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
no
Language :
English
Title :
Investigation of OpenFOAM-XDEM momentum coupling results for AWJC Nozzle using preCICE