[en] We develop the theory of an Andreev junction, which provides a method to probe the intrinsic topology of the Fermi sea of a two-dimensional electron gas (2DEG). An Andreev junction is a Josephson π junction proximitizing a ballistic 2DEG, and exhibits low-energy Andreev bound states that propagate along the junction. It has been shown that measuring the nonlocal Landauer conductance due to these Andreev modes in a narrow linear junction leads to a topological Andreev rectification (TAR) effect characterized by a quantized conductance that is sensitive to the Euler characteristic χF of the 2DEG Fermi sea. Here we expand on that analysis and consider more realistic device geometries that go beyond the narrow linear junction and fully adiabatic limits considered earlier. Wider junctions exhibit additional Andreev modes that contribute to the transport and degrade the quantization of the conductance. Nonetheless, we show that an appropriately defined rectified conductance remains robustly quantized provided large momentum scattering is suppressed. We verify and demonstrate these predictions by performing extensive numerical simulations of realistic device geometries. We introduce a simple model system that demonstrates the robustness of the rectified conductance for wide linear junctions as well as point contacts, even when the nonlocal conductance is not quantized. Motivated by recent experimental advances, we model devices in specific materials, including InAs quantum wells, as well as monolayer and bilayer graphene. These studies indicate that for sufficiently ballistic samples observation of the TAR effect should be within experimental reach.
Disciplines :
Physique
Auteur, co-auteur :
Tam, Pok Man; University of Pennsylvania - Penn > Physics and Astronomy
DE BEULE, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Kane, Charles L; University of Pennsylvania - Penn > Physics and Astronomy
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Topological Andreev Rectification
Date de publication/diffusion :
20 juin 2023
Titre du périodique :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Maison d'édition :
American Physical Society, College Park, Etats-Unis - Maryland
Volume/Tome :
107
Pagination :
245422
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet FnR :
FNR16515716 - Electronic States And Responses In Moiré Heterostructures, 2021 (14/03/2022-13/03/2023) - Christophe De Beule
K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980) 0031-9007 10.1103/PhysRevLett.45.494.
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982) 0031-9007 10.1103/PhysRevLett.49.405.
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev. 1, 223 (1957) 0018-8646 10.1147/rd.13.0223.
D. S. Fisher and P. A. Lee, Relation between conductivity and transmission matrix, Phys. Rev. B 23, 6851 (1981) 0163-1829 10.1103/PhysRevB.23.6851.
M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys. Rev. Lett. 57, 1761 (1986) 0031-9007 10.1103/PhysRevLett.57.1761.
B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas, Phys. Rev. Lett. 60, 848 (1988) 0031-9007 10.1103/PhysRevLett.60.848.
T. Honda, S. Tarucha, T. Saku, and Y. Tokura, Quantized conductance observed in quantum wires 2 to (Equation presented) long, Jpn. J. Appl. Phys. 34, L72 (1995) 0021-4922 10.1143/JJAP.34.L72.
S. Frank, P. Poncharal, Z. Wang, and W. A. d. Heer, Carbon nanotube quantum resistors, Science 280, 1744 (1998) 0036-8075 10.1126/science.280.5370.1744.
I. van Weperen, S. R. Plissard, E. P. Bakkers, S. M. Frolov, and L. P. Kouwenhoven, Quantized conductance in an InSb nanowire, Nano Lett. 13, 387 (2013) 1530-6984 10.1021/nl3035256.
C. L. Kane, Quantized Nonlinear Conductance in Ballistic Metals, Phys. Rev. Lett. 128, 076801 (2022) 0031-9007 10.1103/PhysRevLett.128.076801.
F. Yang and H. Zhai, Quantized nonlinear transport with ultracold atoms, Quantum 6, 857 (2022) 2521-327X 10.22331/q-2022-11-10-857.
P. Zhang, Quantized topological response in trapped quantum gases, Phys. Rev. A 107, L031305 (2023) 10.1103/PhysRevA.107.L031305.
P. M. Tam, M. Claassen, and C. L. Kane, Topological Multipartite Entanglement in a Fermi Liquid, Phys. Rev. X 12, 031022 (2022) 2160-3308 10.1103/PhysRevX.12.031022.
P. M. Tam and C. L. Kane, Probing Fermi Sea Topology by Andreev State Transport, Phys. Rev. Lett. 130, 096301 (2023) 0031-9007 10.1103/PhysRevLett.130.096301.
F. Pientka, A. Keselman, E. Berg, A. Yacoby, A. Stern, and B. I. Halperin, Topological Superconductivity in a Planar Josephson Junction, Phys. Rev. X 7, 021032 (2017) 2160-3308 10.1103/PhysRevX.7.021032.
H. Ren, F. Pientka, S. Hart, A. T. Pierce, M. Kosowsky, L. Lunczer, R. Schlereth, B. Scharf, E. M. Hankiewicz, L. W. Molenkamp, Topological superconductivity in a phase-controlled Josephson junction, Nature (London) 569, 93 (2019) 0028-0836 10.1038/s41586-019-1148-9.
A. Fornieri, A. M. Whiticar, F. Setiawan, E. Portolés, A. C. C. Drachmann, A. Keselman, S. Gronin, C. Thomas, T. Wang, R. Kallaher, G. C. Gardner, E. Berg, M. J. Manfra, A. Stern, C. M. Marcus, and F. Nichele, Evidence of topological superconductivity in planar Josephson junctions, Nature (London) 569, 89 (2019) 0028-0836 10.1038/s41586-019-1068-8.
A. Banerjee, O. Lesser, M. Rahman, H.-R. Wang, M.-R. Li, A. Kringhøj, A. Whiticar, A. Drachmann, C. Thomas, T. Wang, Signatures of a topological phase transition in a planar Josephson junction, arXiv:2201.03453.
A. Banerjee, O. Lesser, M. A. Rahman, C. Thomas, T. Wang, M. J. Manfra, E. Berg, Y. Oreg, A. Stern, and C. M. Marcus, Local and Nonlocal Transport Spectroscopy in Planar Josephson Junctions, Phys. Rev. Lett. 130, 096202 (2023) 10.1103/PhysRevLett.130.096202.
A. Banerjee, M. Geier, M. A. Rahman, D. S. Sanchez, C. Thomas, T. Wang, M. J. Manfra, K. Flensberg, and C. M. Marcus, Control of Andreev Bound States using Superconducting Phase Texture, Phys. Rev. Lett. 130, 116203 (2023) 10.1103/PhysRevLett.130.116203.
L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008) 0031-9007 10.1103/PhysRevLett.100.096407.
B. J. Wieder, F. Zhang, and C. L. Kane, Signatures of Majorana fermions in topological insulator Josephson junction devices, Phys. Rev. B 89, 075106 (2014) 1098-0121 10.1103/PhysRevB.89.075106.
M. Hell, M. Leijnse, and K. Flensberg, Two-Dimensional Platform for Networks of Majorana Bound States, Phys. Rev. Lett. 118, 107701 (2017) 0031-9007 10.1103/PhysRevLett.118.107701.
J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P. Higginbotham, and K. Flensberg, Nonlocal Conductance Spectroscopy of Andreev Bound States: Symmetry Relations and BCS Charges, Phys. Rev. Lett. 124, 036801 (2020) 0031-9007 10.1103/PhysRevLett.124.036801.
G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J. Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis, and A. P. Higginbotham, Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device, Phys. Rev. Lett. 124, 036802 (2020) 0031-9007 10.1103/PhysRevLett.124.036802.
T. O. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov, Andreev rectifier: A nonlocal conductance signature of topological phase transitions, Phys. Rev. B 97, 045421 (2018) 2469-9950 10.1103/PhysRevB.97.045421.
J. Meair and P. Jacquod, Macroscopic coherent rectification in Andreev interferometers, J. Phys.: Condens. Matter 24, 272201 (2012) 0953-8984 10.1088/0953-8984/24/27/272201.
C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, Kwant: A software package for quantum transport, New J. Phys. 16, 063065 (2014) 1367-2630 10.1088/1367-2630/16/6/063065.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.245422 for the Python codes that perform quantum transport simulations via the Kwant package, which produce the main results reported in Secs. III and IV of this manuscript.
M. Nakahara, Geometry, Topology and Physics, 2nd ed., Graduate Student Series in Physics (Taylor & Francis, Oxfordshire, 2003)
T. Dieck, Algebraic Topology, EMS Textbooks in Mathematics (European Mathematical Society, Zürich, 2008).
J. Milnor, Morse Theory, Annals of Mathematics Studies (Princeton University Press, Princeton, 1963).
C. Nash and S. Sen, Topology and Geometry for Physicists (Elsevier Science, Amsterdam, 1988).
I. M. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region, Zh. Eksp. Teor. Fiz. 38, 1569 (1960)
I. M. Lifshitz, [Sov. Phys. JETP 11, 1130 (1960)].
R. Jackiw and C. Rebbi, Solitons with fermion number (Equation presented), Phys. Rev. D 13, 3398 (1976) 0556-2821 10.1103/PhysRevD.13.3398.
L. Bretheau, J. I.-J. Wang, R. Pisoni, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunnelling spectroscopy of Andreev states in graphene, Nat. Phys. 13, 756 (2017) 1745-2473 10.1038/nphys4110.
J. I.-J. Wang, L. Bretheau, D. Rodan-Legrain, R. Pisoni, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunneling spectroscopy of graphene nanodevices coupled to large-gap superconductors, Phys. Rev. B 98, 121411 (R) (2018) 2469-9950 10.1103/PhysRevB.98.121411.
S. Park, W. Lee, S. Jang, Y.-B. Choi, J. Park, W. Jung, K. Watanabe, T. Taniguchi, G. Y. Cho, and G.-H. Lee, Steady Floquet-Andreev states in graphene Josephson junctions, Nature (London) 603, 421 (2022) 0028-0836 10.1038/s41586-021-04364-8.
C. W. J. Beenakker, Specular Andreev Reflection in Graphene, Phys. Rev. Lett. 97, 067007 (2006) 0031-9007 10.1103/PhysRevLett.97.067007.
M. Titov and C. W. J. Beenakker, Josephson effect in ballistic graphene, Phys. Rev. B 74, 041401 (R) (2006) 1098-0121 10.1103/PhysRevB.74.041401.
H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Bipolar supercurrent in graphene, Nature (London) 446, 56 (2007) 0028-0836 10.1038/nature05555.
X. Du, I. Skachko, and E. Y. Andrei, Josephson current and multiple Andreev reflections in graphene SNS junctions, Phys. Rev. B 77, 184507 (2008) 1098-0121 10.1103/PhysRevB.77.184507.
V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K. Vandersypen, Ballistic Josephson junctions in edge-contacted graphene, Nat. Nanotechnol. 10, 761 (2015) 1748-3387 10.1038/nnano.2015.156.
M. Ben Shalom, M. J. Zhu, V. I. Fal'ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance, Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene, Nat. Phys. 12, 318 (2016) 1745-2473 10.1038/nphys3592.
D. K. Efetov, L. Wang, C. Handschin, K. B. Efetov, J. Shuang, R. Cava, T. Taniguchi, K. Watanabe, J. Hone, C. R. Dean, and P. Kim, Specular interband Andreev reflections at van der Waals interfaces between graphene and (Equation presented), Nat. Phys. 12, 328 (2016) 1745-2473 10.1038/nphys3583.
M. T. Allen, O. Shtanko, I. C. Fulga, A. R. Akhmerov, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, Spatially resolved edge currents and guided-wave electronic states in graphene, Nat. Phys. 12, 128 (2016) 1745-2473 10.1038/nphys3534.
F. Amet, C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon, M. Yamamoto, Y. Bomze, S. Tarucha, and G. Finkelstein, Supercurrent in the quantum Hall regime, Science 352, 966 (2016) 0036-8075 10.1126/science.aad6203.
G. Nanda, J. L. Aguilera-Servin, P. Rakyta, A. Kormányos, R. Kleiner, D. Koelle, K. Watanabe, T. Taniguchi, L. M. K. Vandersypen, and S. Goswami, Current-phase relation of ballistic graphene josephson junctions, Nano Lett. 17, 3396 (2017) 1530-6984 10.1021/acs.nanolett.7b00097.
T. Li, J. Gallop, L. Hao, and E. Romans, Ballistic Josephson junctions based on CVD graphene, Supercond. Sci. Technol. 31, 045004 (2018) 0953-2048 10.1088/1361-6668/aaab81.
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009) 0034-6861 10.1103/RevModPhys.81.109.
M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R. Maurand, F. Tkatschenko, M. Weiss, C. Schönenberger, and K. Richter, Scalable Tight-Binding Model for Graphene, Phys. Rev. Lett. 114, 036601 (2015) 0031-9007 10.1103/PhysRevLett.114.036601.
J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater. 10, 282 (2011) 1476-1122 10.1038/nmat2968.
E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Electronic properties of a biased graphene bilayer, J. Phys.: Condens. Matter 22, 175503 (2010) 0953-8984 10.1088/0953-8984/22/17/175503.
Y. Takane and H. Ebisawa, Conductance and its fluctuations of mesoscopic wires in contact with a superconductor, J. Phys. Soc. Jpn. 61, 2858 (1992) 0031-9015 10.1143/JPSJ.61.2858.
S. Datta, P. F. Bagwell, and M. P. Anantram, Scattering theory of transport for mesoscopic superconductors, Eng. Tech. Rep. (1996).