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We develop the theory of an Andreev junction, which provides a method to probe the intrin-
sic topology of the Fermi sea of a two-dimensional electron gas (2DEG). An Andreev junction is
a Josephson π junction proximitizing a ballistic 2DEG, and exhibits low-energy Andreev bound
states that propagate along the junction. It has been shown that measuring the nonlocal Landauer
conductance due to these Andreev modes in a narrow linear junction leads to a topological An-
dreev rectification (TAR) effect characterized by a quantized conductance that is sensitive to the
Euler characteristic χF of the 2DEG Fermi sea. Here we expand on that analysis and consider
more realistic device geometries that go beyond the narrow linear junction and fully adiabatic limits
considered earlier. Wider junctions exhibit additional Andreev modes that contribute to the trans-
port and degrade the quantization of the conductance. Nonetheless, we show that an appropriately
defined rectified conductance remains robustly quantized provided large momentum scattering is
suppressed. We verify and demonstrate these predictions by performing extensive numerical simu-
lations of realistic device geometries. We introduce a simple model system that demonstrates the
robustness of the rectified conductance for wide linear junctions as well as point contacts, even
when the nonlocal conductance is not quantized. Motivated by recent experimental advances, we
model devices in specific materials, including InAs quantum wells, as well as monolayer and bilayer
graphene. These studies indicate that for sufficiently ballistic samples observation of the TAR effect
should be within experimental reach.

I. INTRODUCTION

A powerful method for characterizing quantum many-
body phases of matter is to identify quantized response
functions that probe topological features of the phase.
This type of analysis was initiated by the integer quan-
tized Hall effect, which probes the Chern number charac-
terizing the topology of a gapped two-dimensional (2D)
electronic phase [1, 2]. A related type of quantized re-
sponse occurs in a one-dimensional (1D) ballistic metal,
where the Landauer conductance exhibits steps that are
quantized in units of e2/h reflecting the number of occu-
pied one-dimensional subbands [3, 4]. This integer can
be interpreted as the Euler characteristic of the Fermi
sea, χF , a topological invariant that counts the number
of components of the filled Fermi sea of a one-dimensional
metal. Though the quantized Landauer conductance is
insensitive to weak electron-electron interactions, this
type of quantized response is less robust than the quan-
tized Hall effect because it requires the conducting chan-
nels to be perfectly transmitted and the reflected chan-
nels to be perfectly reflected. This will be approximately
the case provided transport is sufficiently ballistic, the
contacts are sufficiently reflectionless and the channel
is sufficiently long. Despite these conditions, quantized
Landauer transport has been observed in a variety of sys-
tems, including relatively short quantum point contacts
[5–8].

The feasibility of quantized Landauer transport in
one dimension motivated the search for probes of Fermi

∗ These two authors contributed equally.

sea topology in higher-dimensional metals. Frequency-
dependent and time-domain nonlinear responses [9–11],
as well as equal-time density correlations [12], have been
shown to probe χF , though unlike the Landauer conduc-
tance in one dimension, quantization of these quantities
is only precise in the absence of interactions. It was ar-
gued that a measure of multipartite entanglement in an
interacting Fermi liquid probes χF [12], but that is chal-
lenging to probe experimentally.

Recently, two of the authors introduced a method to
probe χF of a two-dimensional electron gas (2DEG) that
is robust in the presence of interactions [13]. The pro-
posal involves proximitizing the 2DEG with a grounded
superconductor to form a linear1 SNS (S: superconduc-
tor; N: normal metal) Josephson junction with phase dif-
ference π. Then χF is probed by measuring the Landauer
transport along the junction between source and drain
contacts to the 2DEG at either end of the superconduct-
ing junction, as shown in Fig. 1. The current in the drain
(I2) in response to a voltage applied to the source (V1)
is carried by Andreev bound states (ABSs) that are ex-
tended along the junction. We will refer to this setup
as an Andreev junction, so as to contrast with the more
conventional Josephson junction where the current of in-
terest flows between the superconductors.

It is instructive to compare transport in this Andreev
junction setup to Landauer transport in an ordinary

1 This type of device architecture has also been called planar in
the literature [14–19]. Here we use the term linear to highlight
the one-dimensional channel in the 2DEG between the supercon-
ductors. We will also consider a point-contact geometry, where
the 1D channel is reduced to a point.

ar
X

iv
:2

30
2.

14
05

0v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
7 

Fe
b 

20
23



2

point contact or quantum wire. In the case of ordinary
Landauer transport, the 1D channel is formed by pinch-
ing off a 2DEG using an insulating energy gap. For the
Andreev junction, the 1D channel is formed by pinching
off with a superconducting energy gap. For a wide junc-
tion, relative to the superconducting coherence length,
there will be many channels of ABSs within the junc-
tion. For a narrow junction, provided the phase differ-
ence across the junction is π, there will remain at least
a single pair of ABSs that disperse as a function of the
momentum along the junction.

In Ref. [13], it was found that the source to drain Lan-
dauer conductance of an adiabatic and narrow Andreev
junction is given by

G21(V ) ≡ dI2
dV1

∣∣∣∣
V1=V

=

{
ce e

2/h for V < 0,

ch e
2/h for V > 0.

(1)

Here ce(ch) are the number of propagating Andreev
modes in the 1D channel that become electrons (holes)
upon adiabatic evolution into the leads. For a narrow lin-
ear junction, these, in turn, are determined by the num-
ber of electronlike (holelike) critical points on the Fermi
surface, where the Fermi velocity is parallel to the chan-
nel, and the Fermi surface is locally convex (concave). A
novel feature of this result is that the conductance is dif-
ferent at positive and negative bias voltage. This leads to
a rectification effect, in which a low-frequency AC volt-
age in the source, VAC = V0 cos(ωt), leads to a DC cur-
rent flowing into the drain, IDC = −(e2|V0|/πh)(ce− ch).
While the integers ce and ch depend on the specific ge-
ometry of the Fermi surface, as well as its orientation
relative to the 1D channel, their difference depends only
on its topology:

ce − ch = χF , (2)

where χF is the Euler characteristic of the 2D Fermi
sea. In general, χF for any 2D Fermi sea can be ex-
pressed as the sum over all disconnected components of
the Fermi surface, where an electronlike (holelike) Fermi
surface contributes +1 (−1) and an open Fermi surface
contributes 0. We will henceforth refer to this effect as
topological Andreev rectification (TAR). It motivates us
to define the rectified conductance

δG21(V ) ≡ G21(V )−G21(−V ). (3)

It follows from Eq. (1) and Eq. (2) that δG21(V ) probes
the intrinsic topology of the 2D Fermi sea.

The Andreev junction resembles similar Josephson
junction devices that have been studied in an effort
to engineer proximity-induced topological superconduc-
tivity [14–16, 20–22]. Such systems based on InAs or
HgTe quantum wells [14–16, 22] are among the promis-
ing venues for studying the TAR effect. Nonlocal trans-
port measurements have proven to be a useful diagnos-
tic for probing topological superconductivity in Joseph-
son junction setups [17–19], as well as in proximitized

N1 N2

S:

S:

FIG. 1. Layout of the Andreev junction, with width W and
length L. A 2DEG is proximitized by grounded superconduc-
tors with a π phase difference. The topology and geometry of
the Fermi sea of the 2DEG is probed by measuring the nonlo-
cal conductance G12 ≡ dI2/dV1 between the normal metallic
leads (N1 at bias V1 and N2 grounded).

quantum wires [23, 24]. In that context, a rectification
effect has been studied [25], which results from the spe-
cific structure of the Andreev levels in a proximitized 1D
nanowire. However, this is distinct from the TAR effect,
which probes the intrinsic topology of the Fermi sea of a
2DEG.

In this paper, we will expand on the analysis in Ref.
[13], and in an effort to hasten experimental demonstra-
tion of the TAR effect, we will consider more realistic
device geometries that go beyond the narrow junction
and fully adiabatic limits considered in Ref. [13]. We will
begin with a review of the narrow junction limit in Sec-
tion II A. Wider junctions will be considered in Section
II B. In the latter case there exist additional Andreev
modes bound to the SNS junction. These modes will be
critical to our analysis because they can contribute to
the nonlocal conductance, and when there is scattering
among them, the quantization is degraded. We will iden-
tify a physically accessible regime in which interchannel
scattering among modes with nearly the same momen-
tum, that are associated with the same Fermi surface
critical point, degrades the quantization of the nonlocal
conductance G21. However, we will show by analyzing
the multichannel Landauer transmission problem that,
provided large momentum scattering between Fermi sur-
face critical points is absent, the rectified conductance
δG21 remains quantized. Thus, the rectified conductance
provides a more robust marker for the intrinsic topology
of the Fermi sea.

In order to verify these predictions, we have performed
extensive simulations of realistic device geometries using
the Kwant package [26]. In Section III we introduce
a simple toy model that allows us to consider a wide
variety of Fermi sea topologies and real-space junction
geometries that access several regimes of interest, includ-
ing narrow junctions, wide junctions, as well as a point-
contact geometry. We find that in all of these cases, the
TAR effect can be observed provided the transport is suf-
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ficiently ballistic. In Section IV, we model junctions in
specific real materials that are motivated by recent exper-
imental studies of Josephson junctions in InAs quantum
wells, as well as in monolayer and bilayer graphene. In
these simulations we assess the feasibility of measuring
the TAR effect using experimental parameters.

II. TOPOLOGICAL ANDREEV
RECTIFICATION

In this section we develop the analytic framework for
topological Andreev rectification. We will begin in Sec-
tion II A by reviewing the analysis in Ref. [13] of the
fully adiabatic narrow-junction limit. In Section II B we
introduce a multichannel scattering analysis that allows
for the analysis of wider junctions that are not perfectly
adiabatic. We will show that provided large momentum
scattering is suppressed, the rectified conductance δG21

remains a quantized probe of the Fermi sea topology, even
when the quantization of the nonlocal conductance G21

is degraded.

A. Review

It was established in Ref. [13] that the rectified nonlo-
cal conductance of a narrow and adiabatic Andreev junc-
tion is quantized and probes the Euler characteristic of
the 2D Fermi sea. Here we review that analysis.

1. Euler characteristic

The Euler characteristic is an integer topological in-
variant that characterizes any topological space. Here
we review several equivalent formulations of the Euler
characteristic, χF , of a two-dimensional Fermi sea. For
concreteness, consider the hypothetical Fermi sea with
χF = −1 shown in Fig. 2.

a. In terms of Betti numbers: The Euler characteristic
may be written as [27, 28]

χF =
∑
l

(−1)lbl, (4)

where the Betti numbers b` count the number of topo-
logically distinct `-cycles. In Fig. 2, the Fermi sea has
a single connected component, hence b0 = 1. The two
holes in the Fermi sea imply two independent 1-cycles,
hence b1 = 2, and b` = 0 for ` > 1.

b. In terms of critical points of E(k): According to
Morse theory, χF can be expressed in terms of the critical
points of a Morse function [29, 30]. The electronic dis-
persion E(k) is a natural Morse function, and the critical
points where ∇kE(k) = 0 are characterized by a Morse
index η = (0, 1, 2) for a (minimum, saddle, maximum).
Then,

χF = n0 − n1 + n2, (5)

FIG. 2. Illustration of a Fermi sea (gray region) in two spa-
tial dimensions. Fermi sea critical points are shown as green
crosses (minima) and circles (saddles). Fermi surface (black
line) convex/concave critical points, defined for +x̂, are indi-
cated by red/blue dots with their count denoted as ce/h. Here
(ce, ch) = (2, 3), giving χF = ce − ch = −1.

where nη is the number of critical points inside the Fermi
sea with index η. Figure 2 identifies one minimum (η =
0) and two saddles (η = 1). This formulation makes it
clear that a topological Lifshitz transition occurs when a
Fermi sea critical point passes through EF [31, 32].

c. In terms of genus and boundary components: In
two dimensions χF can be expressed as a sum over all
connected components k of the Fermi sea,

χF =
∑
k

(2− 2gk − bk), (6)

where gk is the genus of component k and bk is the num-
ber of boundary components. In Fig. 2, there is a single
component with g = 0 and b = 3, so χF = −1. A non-
trivial genus can arise because the Brillouin zone is a
torus. For example, the complement of the Fermi sea in
Fig. 2 has three components. Each of the two holes has
g = 0 and b = 1, while the outer component wraps the
Brillouin zone and thus has g = 1 and b = 1, leading to
χF = +1 altogether. In general, χF is odd under the
exchange of electrons and holes for an even-dimensional
Fermi sea.

d. In terms of the Fermi surface: In two dimensions
every component of the Fermi surface has the topology
of a circle, but they can be distinguished by whether the
circle encloses electrons, encloses holes, or is open (i.e.,
encloses neither electrons nor holes). Then,

χF = ne − nh, (7)

where ne(h) counts the number of electronlike (holelike)
Fermi surfaces, whereas open Fermi surfaces contribute
zero. In Fig. 2, we have ne = 1 and nh = 2.

e. In terms of Fermi surface critical points: If we spec-

ify an arbitrary unit vector ζ̂, then we may identify criti-
cal points on the Fermi surface to be the points where the

velocity v(k) = ~−1∇kE(k) ‖ ζ̂. Fermi surface critical
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points can be distinguished by the sign of the curvature
of the Fermi surface at that point. We call the critical
point convex, or electronlike, if ∂2E/∂k2

⊥ > 0 (where k⊥
is the component of k perpendicular to ζ̂ ). In the vicin-
ity of such a critical point the Fermi surface resembles an
electron pocket. Alternatively, the critical point is con-
cave, or holelike, if ∂2E/∂k2

⊥ < 0, and the Fermi surface
locally resembles a hole pocket. In terms of these data,

χF = ce − ch, (8)

where ce(h) gives the number of electronlike (holelike)
critical points. In Fig. 2, the electronlike and holelike

critical points for ζ̂ = +x̂ are, respectively, shown as the
red and blue dots, with ce = 2 and ch = 3.

For the purposes of this paper this last formulation
provides the most natural connection to the Andreev
junction. We will show that the low-energy transport
in the junction is dominated by the Fermi surface criti-
cal points where the velocity is parallel to the junction

(i.e., with ζ̂ parallel to the NS interfaces). It is worth
emphasizing that the integers ce and ch are not by them-
selves topological invariants. They depend on the specific
geometry of the Fermi surface as well as on the chosen
direction for defining the critical points. However, the
difference ce − ch depends only on the intrinsic topology
of the Fermi sea. For example, if instead in Fig. 2 we had

chosen ζ̂ = +ŷ, then we would have ce = 1 and ch = 2.

2. Andreev zero modes at a π junction

Fermi surface critical points, as defined above, are
probed by Andreev bound states (ABSs). In this work,
as well as in Ref. [13], we focus on the ABSs hosted by
an SNS π junction (i.e., with a superconducting phase
difference of π, see Fig. 1). The reason for focusing on π
junctions is that in this case the presence of subgap ABSs
is a robust topological feature. To see this, consider an
infinitely-long channel oriented in the x̂ direction, such
that the electronic states can be indexed by the momen-
tum kx. The Andreev states bound to the junction are
found by solving the Bogoliubov-de Gennes (BdG) equa-
tion for motion in the ŷ direction for each value of kx.
For values of kx that are away from the Fermi surface

critical points (defined for ζ̂ = ±x̂) the electronic dis-
persion along the ky direction can be approximated in
the vicinity of a Fermi surface point kyF (kx) by lineariz-
ing: E(kx, ky) ≈ EF + vy(kx) [ky − kyF (kx)] (here and
throughout this section we set ~ = 1). When there is a
single pair of Fermi surface points at k = (kx,±kyF ) with
opposite velocity ±vy, the resulting BdG equation takes
the form of a 1D Dirac equation with a spatially-varying
mass term due to the pairing potential ∆ = ∆1 + i∆2.
The corresponding BdG Hamiltonian is

H = −iτzσzvy∂y + ∆1(y)τx + ∆2(y)τy, (9)

where σz = ±1 distinguishes the Fermi points, and τ
are Pauli matrices in the Nambu space. When the phase

difference across the junction is π, we may set ∆1 = 0,
and ∆2(y) changes sign across the junction. Equation
(9) then exhibits a pair of degenerate Jackiw-Rebbi zero
modes indexed by σz [33]. For values of kx where there
are no Fermi surface points, then clearly there will be
no zero modes. If kx is such that there are 2n Fermi
surface points, then there will be 2n zero modes. Thus,
the count of zero modes of Eq. (9) as a function of kx
contains geometric information about the Fermi sea.

The exactness of the zero-mode solutions of Eq. (9)
relies on the absence of any normal reflection at the in-
terface, which guarantees that [H, σz] = 0. In this work,
we focus on junctions that are perfectly transparent, so
that the Hamiltonian contains no scattering terms that
connect the Fermi points. However, even for a perfect
junction, the exactness of the zero modes is an artifact
of the linear approximation in Eq. (9), which treats the
σz = ±1 bands as completely independent. In reality,
states at different Fermi points can derive from the same
band, and a more complete description can be formulated
in terms of a single-band model described by a second (or
higher) order differential equation. As shown below, this
leads to a splitting of the zero modes by an amount of or-
der |∆|2/µ(kx), where µ(kx) is the Fermi energy relative
to the band edge at a given kx.

When kx approaches a Fermi surface critical point,
the linearized approximation necessarily breaks down be-
cause µ(kx) → 0. This is consistent with the fact that
when kx crosses a critical point the zero mode count will
change. In the vicinity of the critical points the energy of
the nominal zero modes will disperse as a function of kx.
Our working assumption in this paper is that |∆| � EF ,
where EF is the appropriate energy scale associated with
the Fermi sea. Deep inside the Fermi sea (away from the
surface critical points), the splitting of the zero modes is
thus of order |∆|2/EF , which is much smaller than |∆|.
In this case, the zero modes will exhibit significant dis-
persion as a function of kx only near the critical points.
Thus, the dispersing Andreev modes are in correspon-
dence with the critical points, and can be analyzed by
focusing on the vicinity of each critical point. This anal-
ysis was introduced in Ref. [13], and is reviewed below.

3. Dispersive Andreev modes associated with Fermi surface
critical points

Close to a Fermi surface critical point at which
vy(kx) = ∂E/∂ky = 0, the energy can be linearized as a
function of kx, but it is necessary to expand to second
order in ky. This leads to the following model for an
Andreev junction of width W [13],

HBdG(kx) = [θ (y −W/2)− θ (−y −W/2)] ∆0τy

+

(
− 1

2m∗
∂2
y + vxδkx

)
τz.

(10)

Here δkx ≡ kx − kF is the kx momentum relative to the
critical point at k = (kF , 0), τy and τz are Pauli matrices
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FIG. 3. ABS spectrum of an infinitely-long π junction near
a convex Fermi surface critical point. Shown here for (a)

a narrow junction with W
√
|2m∗∆0| = 0.1 and (b) a wide

junction with W
√
|2m∗∆0| = 10. In (b) we indicate the

scaling of the level spacing with W near the critical point (∼
1/m∗W 2) and deep in Fermi pocket (∼ vy/W ) where vy(kx)
is the Fermi velocity in the ky direction. The color scale gives
the electron-hole character 〈τz〉 = v−1

x dε/dkx of the ABSs.

acting in the electron-hole space, ∆0 is the magnitude
of the proximity-induced pairing gap, and m∗ ≷ 0 is the
effective mass at the convex/concave critical point.

For W = 0 exactly one ABS is found with dispersion
[13],

ε(kx) = ±

vxδkx
2

+ sgn(m∗)

√(
vxδkx

2

)2

+
∆2

0

2

 .
(11)

Deep inside the Fermi pocket where vxδkx/m
∗ < 0,

the dispersion of the ABS is flattened with ε ≈
±∆2

0/(2vxδkx). For δkx ∼ kF , i.e., the momentum scale
associated with the size of the Fermi sea, we have vxδkx ∼
EF which recovers the ∆2

0/EF splitting mentioned above,
and is consistent with the expectation of having approx-
imate zero modes for ∆0 � EF . On the other hand,
far outside the Fermi pocket, where vxδkx/m

∗ > 0, the
ABS energy approaches the dispersion of the metal with
ε ≈ ±vxδkx, so the zero mode is absent. Right at the
critical point ε = ±∆0/

√
2. While the exact form of

the dispersion depends on microscopic details (e.g., vx
and W ), the presence of such a dispersive ABS for each
Fermi surface critical point is a robust topological fea-
ture of the narrow π junction. Figure 3(a) shows the
spectrum of the ABS near a convex critical point for a
finite-width π junction with W � |2m∗∆0|−1/2, which is
well approximated by (11).

Just as there are two types of Fermi surface criti-
cal points (convex or concave), there are also two types
of dispersive ABSs, which are distinguished by whether
they are electronlike or holelike at positive energy. We
define the electron-hole character of an ABS excitation
as 〈τz〉 for the BdG mode with ε > 0. This is equal to +1
(−1) for a normal electron (hole). Note that the electron-
hole character is related to the slope of the ABS disper-

sion by the Hellman-Feynman theorem: dε/dkx = vx〈τz〉.
Thus, the electron-hole character, indicated by the color
of the curves in Fig. 3, is related to the slope of the
curves. As we have established that the ABS disper-
sion ε → ±vxδkx far outside the Fermi pocket, we find
〈τz〉 → ±1. A convex (electronlike) critical point [as
shown in Fig. 3(a)] is associated to an electronlike ABS
excitation with a positive electron-hole character. A con-
cave (holelike) critical point will have a dispersion that
resembles Fig. 3(a) rotated by 180◦, and will be asso-
ciated with a holelike ABS excitation with a negative
electron-hole character.

The electron-hole character of an ABS excitation, in
turn, determines the fate of the mode as it propagates
into a normal lead. In Ref. [13], a lead was modeled in
two ways. The simplest is to imagine adiabatically de-
creasing ∆0 (while keeping W fixed). In that case, the
energy of the single ABS excitation relative to ∆0 grows,
so that in Fig. 3(a) ε/∆0 moves away from zero. An ini-
tially low-energy Andreev state, with a mixed electron-
hole character, will thus evolve into a state with a definite
electron-hole character 〈τz〉 = ±1. A somewhat more re-
alistic model for an adiabatic contact is to consider in-
creasing W sufficiently slow (keeping ∆0 fixed). As W
increases, there will be additional Andreev modes bound
to the junction, as shown in Fig. 3(b). In the adiabatic
approximation, a state will follow the same band as it
smoothly evolves upon increasing W , and it can again
be seen that deep inside the lead an ABS excitation will
acquire a definite electron or hole character, which is de-
termined by whether the critical point is convex or con-
cave. This, in turn, determines the current carried by a
quasiparticle populating the Andreev mode when it prop-
agates into a lead. It also specifies the population of the
Andreev mode, which depends on the chemical potential
of the lead it is incident from.

We thus conclude that each electronlike (holelike) criti-
cal point is associated with a propagating ABS that pro-
vides a conducting channel connecting the source and
the drain for electrons (holes). We next show that these
modes lead to a quantized Landauer conductance that
depends on the sign of the voltage bias.

4. Quantized transport via Andreev states

We now apply the relation between the convex or con-
cave nature of a Fermi surface critical point and the elec-
tron or hole nature of the associated dispersive ABS to
transport along a narrow Andreev junction as depicted
in Fig. 1. We are interested in the nonlocal differential
conductance defined as (see Appendix A),

G21 ≡
dI2
dV1

T→0
=

e2

h

[
T ee21 (ε)− The21 (ε)

]
ε=eV1

. (12)

Here T
ee(he)
21 (ε) describes the transmission of an electron

incident from lead N1 at energy ε to lead N2, where
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it emerges as an electron (hole). For ε < 0 this could

equally well be interpreted as T
hh(eh)
21 (−ε), i.e., the trans-

mission of a hole at energy −ε in N1 to a hole (electron)
in N2. The equivalence of these interpretations is guar-
anteed by the electron-hole symmetry of the BdG theory.
When the junction length L is much longer than the su-
perconducting coherence length ξ = vx/π∆0, crossed An-
dreev reflection is suppressed and hence The21 = 0. More-
over, the dispersive ABSs are the only transmission chan-
nels between leads N1 and N2. Since there are ce (ch)
number of electronlike (holelike) ABSs, and assuming re-
flectionless contacts and ballistic transport, we find

T ee21 (ε > 0) = ce and T ee21 (ε < 0) = ch, (13)

which implies

G21 =
e2

h
[ce θ(eV1) + ch θ(−eV1)] . (14)

Notice that the quantization in G21 is sensitive to the
shape of the Fermi sea as well as the orientation of the
junction. On the other hand, the rectified nonlocal con-
ductance, as defined in Eq. (3), obeys

δG21(V1) = sgn(eV1)
e2

h
χF , (15)

which is a quantized probe of the intrinsic topology of
the Fermi sea. We refer to the quantization in δG21 as
the topological Andreev rectification (TAR) effect.

Equation (14) is the central result of Ref. [13], which is
derived for a narrow Andreev junction hosting one ABS
per Fermi surface critical point, and under the assump-
tion that the ABSs moving out of the junction would
adiabatically evolve into definite electrons or holes inside
the normal lead. In this case, Eq. (15) is simply a corol-
lary. However, as we argue below, for a wider junction,
which can have multiple ABSs, there is a regime in which
the quantization of G21 is degraded, while the quantiza-
tion of δG21 remains robust.

The reason for the existence of this regime can be
understood by examining the Andreev mode dispersion
near a critical point for a wider junction, shown in Fig.
3(b). Note the Andreev mode spacing is smaller when
kx is close to the critical point. In general, the An-
dreev level spacing is of order vy(kx)/W . In Eq. (10),

vy = kyF (kx)/m∗ ∼ |vxδkx/m∗|1/2. Deep inside the Fermi
pocket, δkx ∼ kF and vy ∼ vF , so the deep Andreev level
spacing is of order vF /W . However, vy → 0 when δkx
is small. This leads to a level spacing of order 1/m∗W 2

close to the critical point. We will focus on the regime
in which the energy of the relevant dispersive Andreev
modes, which is set by the bias voltage V1, is of order (or
less than) the deep level spacing vF /W . In this case there
can still be several Andreev bound states for kx close to
the critical point. These modes have nearly the same
momentum, which makes the adiabatic approximation
less reliable for them. Moreover, even when the width of

FIG. 4. Model for transport along the Andreev junction.
Scattering from the leads to the junction is described by the
scattering matrices S1 and S2. Here we illustrate a case rel-
evant for a convex Fermi surface critical point at kx = kF ,
where at a positive energy the number of electronlike (solid
red) and holelike (dashed blue) modes in the junction at ±kF
are given by Ne = 2 and Nh = 1.

the junction increases adiabatically slow, the Fermi en-
ergy will pass through turning points where these modes
come and go in a complicated way. This inevitably leads
to a breakdown in the adiabatic approximation, resulting
in a degradation of the quantization of the nonlocal con-
ductance G21. In the following, we will show that despite
this breakdown in the quantization of G21, the rectified
conductance δG21 remains robustly quantized provided
large momentum scattering between the Fermi surface
critical points is negligible.

B. Beyond the narrow-junction limit

In this section we consider a junction of width W &
|2m∗∆0|−1/2, which can have multiple ABSs associated
with each Fermi surface critical point. We analyze the
coupling of these modes to the leads within a multichan-
nel Landauer formalism. Remarkably, we find that the
quantization of the rectified nonlocal conductance δG21

persists even for a wide junction as long as scattering be-
tween ABSs across the Fermi surface is suppressed, and
either time-reversal symmetry T or mirror symmetryMx

(x 7→ −x) along the transport direction is preserved. We
further find that δG21 is related to the number of occu-
pied ABSs deep in the Fermi pockets. Hence, at suffi-
ciently small bias voltage the plateau in δG21 remains a
good measure of the Fermi sea topology χF .

We start by dividing the total system into the two
leads and the junction, where the latter is defined as the
region with constant width W . As illustrated in Fig. 4,
scattering from the two leads to the junction is governed
by two scattering matrices S1 and S2. We have(

blead
1L

φABS
R

)
= S1

(
alead

1R

φABS
L

)
,

(
blead
2R

φABS
L

)
= S2

(
alead

1L

φABS
R

)
,

(16)
with a and b the incoming and outgoing amplitudes of
propagating modes in the leads, and the subscripts in-
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dicating the lead and the propagation direction. The
amplitudes of right- or left-propagating ABSs are given
by φABS

R/L. Here we have absorbed the phases accumulated

during propagation into the S matrices,

S1 =

(
r1L t1L

t1R r1R

)
, S2 =

(
r2R t2R

t2L r2L

)
, (17)

where the subscript R/L denotes transmission (t) or re-
flection (r) to the right/left.

Let us consider scattering between lead N1 and the
junction in closer detail. The transmission matrix from
lead N1 to the junction is the N×M1 matrix t1R where N
(M1) is the number of right movers in the junction (lead

N1). Since M1 � N , the matrix t†1Rt1R has at least
M1 − N zero eigenvalues by the rank-nullity theorem,

which also holds for t1Lt
†
1L. We now choose a basis for the

incoming (outgoing) lead modes that diagonalizes t†1Rt1R
(and t1Lt

†
1L). In this basis, we can write blead

1L

φABS
R

blead
1L

 = S1

a
lead
1R

φABS
L

alead
1R

 , (18)

where the lead modes with zero transmission eigenvalues
are denoted as lead and

S1 =

 r1L t1L A

t1R r1R 0N×(M1−N)

B 0(M1−N)×N ρ1L

 . (19)

Here we have used the same notation even though the
submatrices are generally different after the basis trans-
formation. In the new notation r1L, r1R, t1L, and t1R
are N × N matrices2 , while ρ1L is square with dimen-
sion M1 −N . The latter contains both normal and An-
dreev reflection coefficients of the zero transmission lead
subspace. Moreover, unitarity of the scattering matrix

S†1S1 = S1S
†
1 = 1 implies

t†1LA = t1RB
† = 0. (20)

By construction, t†1L and t1R have trivial nullspaces. It
follows that A and B are zero. We obtain

S1 =

 r1L t1L 0

t1R r1R 0

0 0 ρ1L

 . (21)

2 In the event that the original t†1Rt1R (or t1Lt
†
1L) has more than

M1 −N zero modes, then there will exist zero modes of t1Rt
†
1R

(or t†1Lt1L), implying modes in the junction that are perfectly
reflected and decoupled from the lead. In that case the new t1L
and t1R matrices are not square, which complicates our analysis.
To resolve that, we add a small perturbation that lifts the extra
zero modes, making t1L and t1R square. That perturbation can
then be set to zero in the decoupled scattering problem.

FIG. 5. Decoupling of the reduced scattering problem into
two independent channels at ±kF . Here, we illustrate the
case with Ne = 2 electronlike modes (solid red) and Nh = 1
holelike modes (dashed blue) at positive energy, for a convex
Fermi surface critical point at kx = kF . The total S matrix
in the nonzero transmission subspace is given by s = s1 � s2.

Because we can perform the same procedure for the lead
N2, the scattering problem is decoupled into three inde-
pendent problems: two purely reflection problems of di-
mension Mi−N (i = 1, 2 ) for the zero transmission lead
modes and an N -dimensional problem involving both the
junction and the lead modes with nonzero transmission
eigenvalues. Since we are interested in the latter, we can
henceforth focus on the smaller subsystem with N × N
scattering matrices s1 and s2, as illustrated in Fig. 5.

Up to this point, the analysis has been completely gen-
eral. We now restrict our attention to the case where all
ABSs (at a given energy) have momentum kx ≈ ±kF .
This is generally satisfied for energies ε away from the
Andreev levels deep inside the Fermi pocket, as shown
in Fig. 3(b). These ABSs are associated to a Fermi sur-
face critical point at kx = +kF , and given our definition

for the critical point (with ζ̂ = +x̂), right movers at
kx ≈ +kF are always electronlike while left movers are
holelike. Then either T or Mx imply that the electron-
like (holelike) ABSs at kx ≈ −kF are left (right) movers.
Furthermore, in the adiabatic limit where the width of
the junction varies slowly with respect to k−1

F , scattering
between states at +kF and −kF is negligible. Note that
there are still normal and Andreev reflections in the zero
transmission lead subspace, but these do not affect the
transmission between leads N1 and N2. Therefore the
total S matrix of the reduced system takes on a block-
diagonal form in the adiabatic limit,

s = s1 � s2 =


rheL thhL 0 0

teeR rehR 0 0

0 0 rehL teeL
0 0 thhR rheR

 , (22)

where � stands for the composition of the reduced scat-
tering matrices, see Fig. 5. The upper-left (lower-right)
block is designated to the +kF (−kF ) modes, the sub-
script L/R indicates the outgoing direction, and the su-
perscript αβ indicates the conversion of a β-like mode
into an α-like mode. Here the reflection and transmis-
sion matrices in Eq. (22) are related to those in S1 and
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S2. For example,(
teeR tehR
theR thhR

)
= t2R [1N − r1Rr2L]

−1
t1R, (23a)(

reeL rehL
rheL thhL

)
= r1L + t1Lr2L [1N − r1Rr2L]

−1
t1R. (23b)

Notice that in Eq. (22) we have assumed that the am-
plitudes tehR and theR in Eq. (23a), as well as reeL and rhhL
in Eq. (23b), all vanish due to the suppressed scattering
across the Fermi surface.

The nonlocal differential conductance at zero temper-
ature is now given by

G21(+V1) =
dI2
dV1

∣∣∣∣
+V1

=
e2

h
Tr
[
(teeR )

†
teeR

]
ε=eV1

, (24a)

G21(−V1) =
dI2
dV1

∣∣∣∣
−V1

=
e2

h
Tr
[(
thhR
)†
thhR

]
ε=eV1

, (24b)

where we used the electron-hole symmetry of the BdG
Hamiltonian in the last line. Unitarity of s implies(

rheL
)†
rheL + (teeR )

†
teeR = 1Ne , (25a)

rheL
(
rheL
)†

+ thhL
(
thhL
)†

= 1Nh
, (25b)

with N = Ne + Nh, and Ne (Nh) the number of right
(left) movers at +kF (see Fig. 5). Taking the trace and
subtracting yields

Tr
[
(teeR )

†
teeR

]
− Tr

[(
thhL
)†
thhL

]
= Ne −Nh, (26)

which are all evaluated at energy ε = eV1. Finally, when
either T or Mx is preserved, we may interchange R and
L in Eq. (24b), so that the rectified conductance becomes

δG21(V1) =
e2

h
(Ne −Nh )ε=eV1

. (27)

The validity of this result is independent of the number
of ABSs in the junction and depends only on the assump-
tion that scattering across the Fermi surface is strongly
suppressed for the nonzero transmission subspace, as well
as the presence of T or Mx

3. We thus see that the rec-
tified conductance δG21 is still quantized for a wide An-
dreev junction, provided that the applied bias does not
excite any Andreev states deep inside the Fermi pocket.
In particular, there always exists a window of small bias
eV1 > 0 such that Ne − Nh = ce − ch = χF . Upon in-
creasing the bias above the deep Andreev level spacing

3 When both T and Mx are present, we have δG21(V1) =
−δG11(V1) ≡ G11(−V1) − G11(V1), so the Fermi sea topology
can also be probed via the rectified local conductance in that
case. See Appendix A for more discussion.

vF /W , one obtains additional quantized plateaus in δG21

at larger values.

In the narrow-junction limit (W � |2m∗∆0|−1/2) the
number of positive energy electronlike (holelike) ABSs at
+kF is given by the number of convex (concave) critical
points of the Fermi surface ce (ch) defined relative to the
transport direction. As this is independent of the subgap
energy we obtain δG21 → sgn(eV1)(e2/h)χF for a narrow
junction in accordance with Eq. (15).

III. TOY MODEL

To demonstrate and verify our results, we perform
transport simulations with the Kwant package [26]. We
first consider a toy model on a square lattice (with lattice
constant a) with a single s orbital per site, as illustrated
in Fig. 6(a). The corresponding setup for the transport
calculation is shown in Fig. 6(b), where a small system
is depicted for clarity. The scattering region is connected
to two normal leads on the left (N1) and right (N2), and
to two proximitized superconducting leads (S) on the top
(∆ = ∆0 > 0 ) and bottom (∆ = −∆0).

We consider a model with only nearest-neighbor hop-
ping, with amplitudes tx and ty along the x and y direc-
tions, respectively. The mean-field Hamiltonian is then

FIG. 6. (a) Square lattice with anistropic hopping ampli-
tudes tx and ty. (b) Setup for the Kwant calculation for a
small system (13× 13 sites). The scattering region with sites
shown as dots, whose color indicate the pair potential ∆n,
is connected to normal (left and right) and superconducting
(bottom and top) leads with sites shown as triangles. (c)
Fermi sea in the Brillouin zone (BZ) for ty/tx = 0.5. From
left to right: µ/tx = 1, µ/tx = 3, and µ/tx = 5. Here χF and
ce,h are labeled for a given spin sector.
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given by Ĥ = Ĥ0 + Ĥ∆, with

Ĥ0 =
∑
σ=↑,↓

∑
n

[
(2tx + 2ty − µ) ĉ†n,σ ĉn,σ

−
(
txĉ
†
n+ex,σ ĉn,σ + ty ĉ

†
n+ey,σ ĉn,σ + h.c.

)]
,

(28)

Ĥ∆ =
∑
n

(
∆nĉ

†
n,↑ĉ

†
n,↓ + ∆∗nĉn,↓ĉn,↑

)
, (29)

where ĉ†n,σ (ĉn,σ) creates (destroys) an electron with spin

σ on site n = (nx, ny) ∈ Z2, ∆n is the superconducting
pair potential at site n, and µ is the chemical potential.
The normal Hamiltonian Ĥ0 has dispersion

E(k) = 2tx (1− cos kxa) + 2ty (1− cos kya)− µ, (30)

where the Fermi sea is defined by E(k) ≤ 0. In the fol-
lowing, we consider anisotropic hopping amplitudes with
ty/tx = 0.5, and tx > 0. In this way, we can access three
types of Fermi sea topology:

χF =


+1 for 0 < µ/tx < 2,

0 for 2 < µ/tx < 4,

−1 for 4 < µ/tx < 6.

(31)

Representative cases are illustrated in Fig. 6(c). The
count of Fermi surface critical points is (ce, ch) = (1, 0),
(1, 1), (0, 1), respective to χF = +1, 0, −1. Since the
normal metal considered here possesses a spin-degenerate
Fermi sea, both χF and ce,h in this section are counted
per spin.

As explained in the previous section, information on
the Fermi sea topology is contained in the nonlocal con-
ductance, which can be computed as (see Appendix A)

G21 =
dI2
dV1

=
e2

h

∫
dε
(
T ee21 − The21

)(
−df1

dε

)
(32)

T→0
=

e2

h

(
T ee21 − The21

)
ε=eV1

, (33)

where f1 = f0(ε − eV1) is the Fermi distribution in lead

N1. The total transmission functions Tαβij (ε) for a charge
carrier of type β to be transmitted from lead Nj to lead
Ni as a charge carrier of type α (α, β = e, h and i, j =
1, 2) are calculated in the Bogoliubov-de Gennes (BdG)
formalism with the Kwant package. Furthermore, in
this section, we are interested in the qualitative features
at temperatures T � ∆0/kB to verify our predictions.
Hence we set T = 0 in the remainder of this section.

We now move on to discuss the numerical results for
three kinds of junction geometries: (A) narrow and long
Andreev junctions; (B) wide and long Andreev junctions;
and (C) Andreev point contacts, where the latter are
defined in Fig. 7. Here a long junction has by definition
a length L� ξ, where ξ is the superconducting coherence
length. We take ∆0 = 0.1tx and estimate

ξ =
~vF
π∆0

∼ txa

∆0
= 10a. (34)

FIG. 7. Transport setup for the Andreev point contact. The
normal metal is pinched off by two superconducting leads that
meet at a point (i.e., a region much smaller than ξ), while the
entire scattering region has dimensions Lx, Ly � ξ.

A narrow junction is defined as hosting a single dispersive
ABS per Fermi surface critical point, see Fig. 3(a), while
for a wide junction there are multiple ABSs, see Fig. 3(b).

In the following, we take a scattering region of dimen-
sions Lx × Ly with Lx = Ly = 100a. For the cases (A)
and (B), the linear junction has length L = Lx.

A. Narrow Andreev junction

For a long junction, both crossed Andreev reflection
and electron tunneling are suppressed. The only trans-
mission channel from lead N1 to lead N2 is through the
ABSs which disperse along the junction. Here we con-

(a)

(b)

(c)

(d)

FIG. 8. Nonlocal transport in a narrow and long Andreev
junction (W = 6a, Lx = Ly = 100a). (a,b,c) Nonlocal con-
ductance G21 versus the subgap bias voltage eV1, for three
sets of chemical potentials µ corresponding to χF = −1, 0,
and +1, respectively. (d) Rectified conductance δG21 as a
function of µ and eV1. Dashed and solid lines are contours
labeled by their respective values. Both G21 and δG21 show
robust quantization indicating the Fermi sea geometry and
topology, respectively.
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(a)

(b)

(c)

(d) (g)

(e)

(f)

FIG. 9. Nonlocal transport in a wide and long Andreev junction (W = 40a, Lx = Ly = 100a). (a,b,c) Nonlocal conductance
G21 as a function of subgap bias voltage eV1 for three sets of chemical potentials µ corresponding to χF = −1, 0, and +1,
respectively. (d,e,f) Rectified conductance δG21 as a function of eV1 for the same µ as in (a,b,c), respectively. (g) Color plot
of δG21 as a function of eV1 and µ. Dashed and solid lines are contours labeled by their respective values. While G21 is
non-universal (i.e., sensitive to µ for fixed χF ), δG21 remains quantized, distinguishing different Fermi sea topologies.

sider a normal region of width W = 6a . ξ. As we
have demonstrated in Sec. II A, each Fermi surface criti-
cal point is associated to one pair of ABSs for a narrow
Andreev junction, see Fig. 3(a). This is the regime where
we expect the theoretical results, given by Eq. (14) and
Eq. (15), to be applicable.

The numerical results confirm our predictions. As
shown in Fig. 8(a)–(c), the nonlocal conductance G21

is quantized (in units of 2e2/h) to the integral value ce
(or ch) for subgap bias voltage eV1 > 0 (or eV1 < 0).
The quantized conductance is contributed by the disper-
sive ABSs close to the Fermi surface critical points (with
kx ≈ ±kF ), while the non-universal zero-bias peak orig-
inates from the zero-energy ABSs deep inside the Fermi
sea (with kx ≈ 0). The quantized plateaus at finite bias
are universal in the sense that they depend only on the
counting of Fermi surface critical points, but not on the
detailed shape of the Fermi sea (such as its size). When
χF = ce − ch 6= 0, the nonlocal conductance is asymmet-
ric in the bias voltage V1. This asymmetry is quantified
by the rectified conductance δG21, as defined in Eq. (3),
and is color-plotted as a function of µ/tx and eV1/∆0 in
Fig. 8(d). In almost the entire subgap regime, δG21 is
found to be quantized to χF (in units of 2e2/h). In this
case, both G21 and δG21 serve as good markers for the
Fermi sea topology. In contrast, the features near zero
bias depend on microscopic details, such as the effect of
normal reflections at the NS interfaces, which split the
nominal zero modes away from zero energy, similar to
Fig. 3(a). This energy splitting oscillates as a function
of the chemical potential with an envelope that scales as

∆2
0/µ for 0 < µ/tx < 1, as can be seen close to zero bias

in Fig. 8(d). We have verified that the width of the zero-
bias peak matches the ABS splitting for an infinitely-long
junction with the same W and µ.

B. Wide Andreev junction

Next, we simulate a wide normal region with W =
40a� ξ. In this case, there are always multiple ABSs at
each Fermi surface critical point. The BdG spectrum
near a convex critical point then resembles Fig. 3(b).
As explained in Sec. II B, backscattering among coun-
terpropagating ABSs (which share opposite electron-hole
character) is present even in the adiabatic limit as these
modes are grouped around kx ≈ +kF (or kx ≈ −kF ).
Consequently, we do not expect G21 to be quantized.
Even when these scattering events are negligible, the
number of ABSs available for transmission would depend
on microscopic details, such as the value of the chemical
potential (for fixed χF ) and the bias voltage in the lead.
Nevertheless, as long as scattering across the Fermi sur-
face is negligible, we have argued in Sec. II B that δG21

remains quantized.

These predictions are verified by the numerical results,
which are summarized in Fig. 9. As shown in (a)–(c), G21

is no longer quantized to ce or ch. Moreover, there is a
rather strong dependence on both µ and eV1. Hence G21

per se no longer indicates the Fermi sea topology. How-
ever, the rectification effect remains robust and quan-
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FIG. 10. (a) ABS spectrum of an infinitely-long Andreev
junction of width W = 40a, for ty/tx = 0.5, ∆0/tx = 0.1, and
µ/tx = 0.2. The normal metal has a convex Fermi surface
critical point at k = (kF , 0) [see Fig. 6(c)]. Dashed lines
indicate the energy of the ABSs at kx = 0. (b) Rectified
conductance δG21 as a function of subgap bias voltage eV1,
for a scattering region of dimensions Lx = Ly = 100a (Lx/ξ ≈
36), and with the same parameters as in (a). Here Ne/h is
the number of right/left moving modes near the Fermi surface
critical point.

tized, depending only on the topology of the Fermi sea.
This is illustrated in Figs. 9(d)–(f), where we show δG21

corresponding to (a)–(c), respectively. We further show
δG21 as a function of µ and eV1 in Fig. 9(g). For a given
Fermi sea topology, irrespective of the precise value of
µ, we find that δG21 always displays a plateau which at-
tains a quantized value of χF (in units of 2e2/h). This
confirms that δG21 remains a good marker for the Fermi
sea topology for transport along wide junctions as long
as scattering between states at kx ≈ +kF and states at
kx ≈ −kF is suppressed. In our simulation, the inter-
face between the normal lead and the Andreev junction
involves a sharp jump in the pair potential on the lat-
tice scale. However, ordinary backscattering (i.e., leav-
ing electron-hole character unchanged) from +k to −k is
mediated by the pair potential as a second-order process
and thus suppressed by a factor on the order of (∆0/tx)2.

The wide Andreev junction hosts additional transport
features which are absent in a narrow junction. Par-
ticularly, for χF = ±1, as shown in Fig. 9, there is an
extended region in which δG21 attains a quantized value
of ±3 (in units of 2e2/h). This is consistent with our pre-
diction from the S-matrix analysis, see Eq. (27), where
δG21(V1) is quantized to an integer that represents the
difference between the number of right-moving electron-
like ABSs (Ne) and the number of left-moving holelike
ABSs (Nh), at energy ε = eV1. The plateau transi-
tions where Ne − Nh changes its integer value, corre-
spond to the energies where an extra ABS deep inside
the Fermi pocket (kx ≈ 0) becomes occupied/depleted.
This is illustrated in Fig. 10 for an Andreev junction

which hosts five ABSs deep inside the Fermi sea. Corre-
spondingly, the rectified conductance δG21, shown in Fig.
10(b), exhibits plateaus at ±1, ±3, and ±5 for subgap
bias eV1 ≷ 0, respectively. Note that plateaus appear
only at odd integer multiples of 2e2/h. This is because
the condition for quantization of δG21 (i.e., the absence
of scattering across the Fermi surface) is only satisfied af-
ter two extra ABSs are occupied/depleted. If the phase
difference across the junction is 0 instead of π, so that
the topological zero modes are absent, we find similar
plateaus, but at even integer multiples of 2e2/h.

C. Andreev point contact

As a final example of our toy model, we consider a
point-contact geometry where the normal regions on the
two sides of the superconducting constriction are cou-
pled at a point, as depicted in Fig. 7. In contrast to
the long Andreev junctions considered before, neither
electron tunneling nor crossed Andreev reflection is sup-
pressed for the Andreev point contact. Hence, we do not
expect G21 to be universal nor quantized. The numer-
ical results for G21, as shown in Fig. 11 (a)–(c), indeed
exhibit a strong dependence on µ (for fixed χF ) and eV1.
Nevertheless, an asymmetry with respect to the bias is
still present for χF 6= 0, and the direction of rectification
clearly depends on sgn(χF ).

The theoretical rationale behind the topological recti-
fication effect assumes that the ABSs are the only trans-
mission modes across the constriction, and that they adi-
abatically evolve into definite electrons/holes inside the
normal leads. These assumptions no longer stand for
a point contact. Thus, we do not a priori expect any
plateau in δG21 for the Andreev point contact. Remark-
ably, the numerical results shown in Figs. 11(d)–(f) for
δG21, which correspond to the same parameters used in
Figs. 11(a)–(c), as well as the color plot in Fig. 11(g),
display a robust quantization of δG21 in terms of χF for
a wide range of parameter values. Hence for a small but
finite bias voltage eV1, δG21 remains a hallmark of the
Fermi sea topology for an Andreev point contact.

IV. MATERIALS

In this section, we discuss numerical results geared to-
wards realistic material platforms. Motivated by recent
experimental studies on Josephson junctions [15–19, 34–
36], we focus on a two-dimensional electron gas (2DEG)
as realized in InAs quantum wells (with strong spin-orbit
coupling) and graphene systems, and examine the feasi-
bility of observing quantized transport in Andreev junc-
tions based on these systems.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 11. Nonlocal transport in an Andreev point contact (Lx = Ly = 100a). (a,b,c) Nonlocal conductance G21 as a function
of subgap bias voltage eV1 for three sets of chemical potentials µ corresponding to χF = −1, 0, and +1, respectively. (d,e,f)
Rectified conductance δG21 as a function of eV1 for the same µ as in (a,b,c), respectively. (g) Color plot of δG21 as a function of
eV1 and µ. Dashed and solid lines are contours labeled by their respective values. While G21 acquires non-universal behavior,
δG21 remains quantized for small bias voltages, distinguishing different Fermi sea topologies.

A. InAs quantum well

In recent years, Josephson junctions in hybrid systems
based on InAs have been studied extensively with the aim
to realize topological superconductivity and Majorana
zero modes [14–17, 22]. Moreover, nonlocal conductance
measurements have recently been performed on hybrid
InAs/Al devices as a probe for topological phase transi-
tions [18, 19]. In the following analysis, we demonstrate
that essentially the same setup can be used to probe TAR
pertinent to the Fermi sea topology of the Rashba-split
2DEG in an InAs quantum well.

We employ the following tight-binding model on a
square lattice (with lattice constant a = 10 nm) to
simulate an Andreev junction in an InAs/Al system:

Ĥ = Ĥ0 + Ĥ∆ with

Ĥ0 =
∑
σ=↑,↓

∑
n

(4t− µn) ĉ†n,σ ĉn,σ

−
∑
σ,σ′

∑
n

[
(tδσ,σ′ + iλRσ

y
σ,σ′)ĉ

†
n+ex,σ ĉn,σ′ + h.c.

]
−
∑
σ,σ′

∑
n

[
(tδσ,σ′ − iλRσxσ,σ′)ĉ

†
n+ey,σ ĉn,σ′ + h.c.

]
,

(35)

Ĥ∆ =
∑
n

(
∆nĉ

†
n,↑ĉ

†
n,↓ + ∆∗nĉn,↓ĉn,↑

)
, (36)

where ĉ†n,σ (ĉn,σ) creates (destroys) an electron with spin

σ on site n = (nx, ny) ∈ Z2, µn and ∆n are respec-
tively the chemical potential and pair potential on site
n. The effective hopping amplitude is t = ~2/(2m∗a2) =
15 meV, where an effective mass m∗ = 0.025me (me

FIG. 12. (a) Top: Dispersion close to the band bottom of the
Rashba-split 2DEG, with E±(k) = −2t[cos(kxa)+cos(kya)]±
2λR

√
sin2(kxa) + sin2(kya). Bottom: For our choice of chem-

ical potential, the Fermi sea (shaded in gray) is composed of
two electronlike pockets, hence χF = 2. (b) ABS spectrum
of a narrow InAs/Al junction of width W = 100 nm for the
parameters in Table I and µN = µS = 10 meV. Here kF is
the Fermi wave vector for λR = 0 and the color indicates the
electron-hole character 〈τz〉 of the ABSs.
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TABLE I. Parameter values (in meV) used for simulating an
Andreev junction in a hybrid InAs/Al system.

t λR ∆0 µN µS

15.0 0.75 0.15 10.0 10.0, 10.3

being the bare electron mass) has been adopted. The
Rashba spin-orbit coupling strength is chosen to be λR =
0.75 meV. In the superconducting region proximitized by
Al leads [cf. Fig. 6(b) and Fig. 7], the magnitude of the
pairing gap is chosen to be ∆0 = 0.15 meV. These are
typical parameter values adopted from recent experimen-
tal studies [17–19].

The chemical potential in the normal region (includ-
ing normal leads) is fixed at µN = 10 meV, which gives
rise to two electronlike Fermi seas as depicted in Fig.
12(a). In practice, the chemical potential can be tuned
by gating within a range of ∼ 1−100 meV. For most cal-
culations presented below, we set the chemical potential
in the superconducting regions µS equal to µN . Given
µ ∼ 10 meV, the superconducting coherence length
ξ ∼ 500 nm, which matches the experimental values re-
ported in Refs. [17–19]. The parameter values adopted
in our Kwant simulation are summarized in Table I.

We first simulate a narrow Andreev junction where the
normal region has width W = 100 nm. This is a realistic
value based on recent experiments [17–19]. The setup fol-
lows Fig. 6(b). The junction is attached to normal leads

FIG. 13. Nonlocal transport in an InAs/Al narrow Andreev
junction of various junction lengths Lx. (a) Nonlocal conduc-
tance G21 versus subgap bias eV1 showing plateaus at 2e2/h
(for eV1 > 0) and 0 (for eV1 < 0) for sufficiently long junc-
tions. (b) Rectified conductance δG21. Quantized plateaus
reflecting χF = 2 are consistently observed over a wide range
of junction lengths. In the presence of a mismatch in µ across
the NS interface, the topological Andreev rectification effect
survives for large enough bias.

of width Ly = 1 µm, and we consider junctions with
lengths varying from 2 µm to 6 µm. The correspond-
ing numerical results are summarized in Fig. 13. While
sufficiently long junctions (Lx & 6 µm) are required for
observing quantized plateaus in G21 that reflect the ge-
ometry of the Fermi sea (ce = 2, ch = 0), a shorter junc-
tion (Lx & 3 µm) already exhibits quantization in the
rectified conductance δG21 which encodes the topology
of the Fermi sea (χF = 2).

In a real device, the superconducting region is most
likely at a different chemical potential than the normal
region, as the Al contacts locally dope the 2DEG. Such an
electrostatic gradient decreases the transparency of the
junction by enhancing ordinary reflections. This results
in an increased energy splitting of the nominal Andreev
zero modes. Thus, a quantized response is anticipated
only for biases |eV1| above this energy scale. To model
this effect, we consider a mismatch in the chemical poten-
tial across the NS interface that is sharp on the lattice
scale (with µN = 10 meV and µS = 10.3 meV). Our
simulations shown in Fig. 13 demonstrate that the rec-
tification and the concomitant signatures of the Fermi
sea topology in the nonlocal conductance are stable for
a step mismatch µS − µN ∼ ∆0. While in practice the
mismatch may be larger than ∆0, a value of the order
of ∆0 for a step mismatch serves as a proxy for a more
realistic potential profile that varies slowly on the scale of
the Fermi wavelength λF . In this case, the transparency
of the NS interface is only slightly reduced and the TAR
effect is expected to remain.

Next, we consider an Andreev point contact using the

FIG. 14. Nonlocal transport in an InAs/Al Andreev point
contact, for several values of Lx = Ly that characterizes the
size of the scattering region. (a) Nonlocal conductance G21

versus subgap bias eV1 showing bias-asymmetry for a wide
range of geometries. (b) Rectified conductance δG21, which
captures the bias-asymmetry, exhibits quantized plateaus
that reflect the Fermi sea topology (χF = 2) for large enough
bias and Lx � ξ. Topological rectification is stable against
mismatch in µ across the NS interface.
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same setup as shown in Fig. 7. Our numerical results are
shown in Fig. 14. While there is no quantization in the
nonlocal conductance G21 for the point contact, as ex-
pected, the rectification effect remains observable. More-
over, for systems that are large compared to ξ, the recti-
fied nonlocal conductance δG21 is quantized and reflects
the Fermi sea topology. This conclusion is unchanged
when there is a mismatch in the chemical potential across
the NS interface that is sharp on the lattice scale and of
the order of ∆0.

We note that all our numerical results were obtained
for disorder-free systems. For the state-of-the-art devices
reported in Refs. [17–19], an electron mean free path in
the range of∼ 200−600 nm was realized (i.e., comparable
to the superconducting coherence length). We anticipate
that with improved fabrication techniques, the mean free
path can be further increased to realize a long and ballis-
tic Andreev junction, in which both quantized δG21 and
G21 can be measured.

B. Graphene

Another interesting platform for realizing our proposal
is graphene. Josephson junctions in graphene have been
extensively studied both theoretically and experimentally
[34–47]. As such, it seems reasonable that nonlocal con-

ductance measurements—to demonstrate the TAR effect
and probe the Fermi sea topology—should be achievable
in graphene systems.

We first consider monolayer graphene (MLG) and sim-
ulate transport in Andreev junctions in the ballistic
regime for reasonable device geometries using a scaled
honeycomb lattice, and taking realistic values for the
proximitized superconducting gap ∆0. Secondly, we con-
sider Bernal bilayer graphene (BLG) with an interlayer
bias. This system has a highly-tunable Fermi sea as a
function of the chemical potential and interlayer bias,
with |χF | ranging from 0 to 3 (per spin and valley). It is
therefore an interesting candidate for investigating TAR.

In all our graphene simulations, we take a scattering
region of dimensions Lx×Ly with Lx = Ly, and consider
a linear junction of length L = Lx and width W , similar
to what is shown in Fig. 6(b) for the square lattice.
Normal (superconducting) leads are attached to the left
and right (top and bottom) of the scattering region.

1. Monolayer graphene

To demonstrate TAR in monolayer graphene (MLG)
we consider the simplest lattice model for the charge car-
riers close to charge neutrality [48]. To this end, we con-

sider a lattice model Ĥ = Ĥ0 + Ĥ∆ with

Ĥ0 =
∑
R,σ

[
−µ
(
â†R,σâR,σ + b̂†R,σ b̂R,σ

)
− t
(
â†R,σ b̂R,σ + â†R+a1,σ

b̂R,σ + â†R+a2,σ
b̂R,σ + h.c.

)]
, (37)

Ĥ∆ =
∑
R

(
∆Râ

†
R,↑â

†
R,↓ + ∆R+τ b̂

†
R,↑b̂

†
R,↓ + h.c.

)
, (38)

where R = n1a1 +n2a2 are lattice vectors with n1/2 ∈ Z
and a1/2 = a(

√
3/2,±1/2) with a ≈ 0.25 nm, see

Fig. 15(a). Here â†R,σ and b̂†R,σ (âR,σ and b̂R,σ) cre-

ate (destroy) an electron with spin σ =↑, ↓ on sub-
lattice A and B, respectively, at sites R and R + τ
with τ = ax̂/

√
3. The nearest-neighbor hopping am-

plitude is given by t ≈ 2.8 eV and ∆r gives the
proximity-induced pair potential at position r with ∆r =
∆0 [θ(−y −W/2)− θ(y −W/2)].

In the low-density regime, the energy bands are given
by a pair of spin-degenerate Dirac cones at the two dis-
tinct zone corners (valleys) K and K ′, as shown in Fig.
15(b). In this case, the Fermi sea topology (per spin
and valley) is given by χF = sgn(µ/t) where the count
of Fermi surface critical points, per spin and valley, is
(ce, ch) = (1, 0) for electron doping and (ce, ch) = (0, 1)
for hole doping. This is illustrated in Fig. 15(c).

Using ∆0 = 0.2 meV as the proximity-induced gap
for Al contacts, we find ξ/a =

√
3t/2π∆0 ∼ 4 × 103.

To make the computation feasible for an intermediately
long (Lx & ξ) and narrow (W . ξ) Andreev junction,
and since we are only considering the regime with a lin-
ear dispersion, we consider a scaled honeycomb lattice
[49]. This is equivalent to solving the Dirac equation on
a hexagonal grid scaled by a factor s, where

a 7→ sa, t 7→ t/s, (39)

such that ~vF =
√

3 ta/2 is invariant. This is justified
as long as s� |t/µ|, or equivalently λF � sa, such that
we remain in the linear regime. Since we want to simu-
late a large system (comparable to ξ ∼ 1 µm) we need
a sufficiently large scaling factor s which puts an upper
bound on |µ|. To this end, we consider carrier densities
|n| = k2

F /π < 1011 cm−2 which, assuming a linear disper-
sion, yields |µ| < 30 meV and thus s� 100. In practice,
it is more favorable to consider a higher carrier density
with |µ| & 100 meV, as a spatial variation of the chemi-
cal potential δµ ∼ 5 meV is present even for high-quality
graphene devices on hBN substrates [50]. When µ is too
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FIG. 15. (a) Graphene lattice where the unit cell is the
dashed rhombus. (b) Energy bands obtained with the nearest-
neighbor model showing the Dirac cones at the BZ corners K
and K′. (c) Fermi sea for µ = ±0.5t with χF = ±2 (per spin),
together with a sketch of the occupation of the Dirac cones.

small, the presence of electron-hole puddles across the
device, which exhibit different Fermi sea topology, can
preclude low-energy Andreev states even in a π junction
[34].

In the following, we take s = 12, which gives a scaled
lattice constant sa of about 3 nm and ξ/sa ∼ 300.
We then numerically implement an Andreev junction of
length Lx = 1000 sa ≈ 3 µm and width W = 100 sa ≈
300 nm in Kwant [26]. These dimensions are compa-
rable to those of state-of-the-art devices [34–36, 42, 46].
An overview of the parameters used for our Kwant sim-
ulation is given in Table II.

The nonlocal conductance G21 and the rectified con-
ductance δG21 are shown in Fig. 16 for two values of the
chemical potential corresponding to χF = ±1 (per spin
and valley), and with ∆0 = 0.2 meV (Al contacts) and
∆0 = 1 meV (Nb or MoRe contacts). We first notice
that the qualitative features of the nonlocal response are
insensitive to whether transport is along the armchair or
zigzag direction. This is anticipated, as the Fermi sea
has full rotational symmetry in the Dirac regime. For Al
contacts [Fig. 16(a) and Fig. 16(c)] we have Lx/ξ = 3
and the nonlocal conductance G21 is not quantized to

TABLE II. Parameter values for simulating an Andreev junc-
tion in hybrid graphene–superconductor systems.

t t⊥ γ3 ∆0

MLG 2.8 eV n.a. n.a. 0.2 meV (Al)

1 meV (Nb or MoRe)

BLG 2.8 eV 0.1t 0.1t 0.0025t

FIG. 16. Nonlocal transport in a narrow MLG-based Andreev
junction, with W = 300 nm and Lx = 3 µm, for a system
of dimensions Lx × Lx with a scaled lattice constant sa =
3 nm. (a) and (b): Nonlocal conductance G21 versus the
subgap bias eV1 for transport along the armchair (solid) and
zigzag (dashed) direction, with ∆0 = 0.2 meV (Al) and ∆0 =
1 meV (Nb or MoRe), respectively. In the latter case, the
system is in the long-junction regime where the quantization
of G21 reflects the Fermi sea geometry. (c) and (d): Rectified
conductance δG21 as a function of eV1 corresponding to (a)
and (b), respectively. In both cases, δG21 shows quantization
indicating the Fermi sea topology.

the count of Fermi surface critical points. This can be
attributed to the presence of electron-tunneling across
the rather short Andreev junction. Nevertheless, δG21 is
found to be nearly quantized to ±1 (in units of 4e2/h)
allowing TAR to be observed in this setting. We also con-
sidered Nb or MoRe contacts [Fig. 16(b) and Fig. 16(d)]
with Lx/ξ = 15, which is in the long-junction regime.
In this case, we find almost perfect quantization in G21

which captures the Fermi sea geometry in accordance to
Eq. (1). For realistic devices with short mean free paths
compared to Lx and ξ, the quantization in G21 and δG21

would both be degraded, but when the chemical potential
is tuned through charge-neutrality one still expects to ob-
serve a sudden jump in δG21 which reflects the change in
the Fermi sea topology. We thus believe that it is possible
to observe signatures of TAR in current state-of-the-art
hybrid superconductor-graphene devices.

2. Bernal bilayer graphene

Bernal-stacked bilayer graphene (BLG) is a potentially
more interesting platform for probing Fermi sea topology
using TAR. Upon the application of an interlayer bias, by
varying top and bottom gate voltages, this system hosts
a much richer landscape of different Fermi sea topolo-
gies as compared to MLG. One can thus potentially tune
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experimentally between different values of χF by vary-
ing the interlayer bias as well as the chemical potential.
Moreover, SNS junctions have been realized experimen-
tally in BLG proximitized with Al [44] (∆0 ≈ 0.2 meV)

as well as NbSe2 thin films [43] (∆0 ≈ 1 meV).
To investigate transport along an Andreev junction

in BLG, we use the following lattice model, Ĥ =∑
l=1,2 Ĥl + Ĥ⊥ + Ĥ∆ with

Ĥl =
∑
R,σ

[
−µl

(
â†R,l,σâR,l,σ + b̂†R,l,σ b̂R,l,σ

)
− t
(
â†R,l,σ b̂R,l,σ + â†R+a1,l,σ

b̂R,l,σ + â†R+a2,l,σ
b̂R,l,σ + h.c.

)]
, (40)

Ĥ⊥ =
∑
R,σ

[
t⊥

(
b̂†R,2,σâR,1,σ + h.c.

)
+ γ3

(
â†R+a1,2,σ

b̂R,1,σ + â†R+a2,2,σ
b̂R,1,σ + â†R+a1+a2,2,σ

b̂R,1,σ + h.c.
)]
, (41)

Ĥ∆ =
∑
R

(
∆Râ

†
R,1,↑â

†
R,1,↓ + ∆R+τ b̂

†
R,1,↑b̂

†
R,1,↓ + ∆R−τ â

†
R,2,↑â

†
R,2,↓ + ∆Rb̂

†
R,2,↑b̂

†
R,2,↓ + h.c.

)
, (42)

where µ1/2 = µ ± U/2 with U the interlayer bias and

µ the chemical potential. Here â†R,l,σ and b̂†R,l,σ (âR,l,σ

and b̂R,l,σ) create (destroy) an electron with spin σ =↑, ↓
on layer l = 1, 2 on sublattice A and B, respectively.
The in-plane position of sublattices A and B are, re-
spectively, R and R + τ for layer 1 and R − τ and
R for layer 2. The most important hoppings [51] are
given by the intralayer nearest-neighbor hopping am-
plitude t and the interlayer hopping between eclipsing
sites on different layers t⊥ ≈ 0.1t. We also include
second-nearest-neighbor interlayer hopping between dif-
ferent sublattices γ3 . 0.1t. The latter gives rise to trig-
onal warping [51] and allows for a richer variety of Fermi
sea topology. The lattice and hoppings are illustrated
in Fig. 17(a). For simplicity, we take the same value
for the proximity-induced pair potential in both layers:
∆r = ∆0 [θ(−y −W/2)− θ(y −W/2)]. The parameters
used for the Kwant simulation are given in Table II.

The interlayer bias U breaks inversion symmetry and
opens a band gap Eg at the K and K ′ points. In the
absence of γ3 hopping, the Fermi sea at each valley is
given by an annulus for Eg/2 < |µ| < U/2 [51]. Upon
turning on γ3, a small energy window appears starting
from the band edge where the annular Fermi sea fractures
into three electronlike (µ > 0) or holelike (µ < 0) Fermi
pockets. We henceforth focus on µ > 0. Owing to a chiral
symmetry that relates the conduction and valence band,
the results for µ < 0 are obtained by reversing the sign
of δG21. Figure 17(b) shows the Fermi sea topology as
a function of µ and U where representative examples are
illustrated in Fig. 17(c). For µ > U/2, the Fermi sea (per
valley and spin) has the topology of either a disk, where
χF = +1, or a pair of concentric disks when the second
conduction band is also occupied, where χF = +2.

To make the transport calculation feasible, instead
of scaling the lattice (which gets tricky due to γ3), we
consider a larger superconducting gap ∆0 = 0.0025t ≈
7 meV. The superconducting coherence length is then
ξ/a ∼ ~vF /π∆0 ∼ 100. While this value for ∆0 is about
seven times larger than the proximity-induced gap for Nb

or MoRe contacts, our aim is to present a proof of prin-
ciple for TAR in BLG, which exhibits a rich landscape
of Fermi sea topology. Note that our results would be
unchanged if we could perform simulations for a larger
system and a realistic ∆0. In fact, assuming a clean sys-
tem, the quantization of δG21 would only improve since
∆0 limits the energy resolution of TAR. We consider here
a long and narrow Andreev junction for transport along
the armchair direction. Here we take Lx = 600a and
W = 4a. Our numerical results for the rectified con-
ductance δG21 are summarized in Fig. 18. We see that
Fig. 18(a) matches well to Fig. 17(b), confirming that
δG21 provides an excellent probe of the Fermi sea topol-

FIG. 17. (a) Lattice of Bernal bilayer graphene with interlayer
bias U showing the intralayer (t) and interlayer (t⊥ and γ3)
hoppings that we take into account in Eq. (40). (b) Fermi
sea topology χF as a function of the chemical potential µ
and U for t⊥ = γ3 = 0.1t. (c) Fermi sea for the four cases
shown in (b). The Fermi surface critical point count (ce, ch)
relative to the +x̂ direction is indicated. In IV the Fermi
sea of the second conduction band (darker) overlaps with the
lower band. Here χF and ce,h are counted per spin and valley.
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FIG. 18. Nonlocal transport for a narrow Andreev junction
based on BLG along the armchair direction. The normal re-
gion has width W = 4a and length Lx = 600a, and the scat-
tering region has dimensions Lx × Lx. (a) Rectified nonlocal
conductance δG21 for eV1/∆0 = 0.5 (with ∆0 ≈ 7 meV) as
a function of interlayer bias U and chemical potential µ. (b)
δG21 as a function of eV1 for U = 0.2t and a set of µ values,
indicated by the crosses in (a).

ogy. The quantized plateaus shown in Fig. 18(b) further
confirm that TAR is in principle observable over a wide
range of bias voltages.

Finally, we comment on a potential issue related to
the experimental implementation of the Andreev junc-
tion in BLG. The application of an interlayer bias across
the entire sample (including the regions coupled to the
superconductor) by means of an additional top gate can
be challenging in practice due to screening by the super-
conductor. However, it is expected that screening is less
important for few-layer van der Waals superconductors
such as NbSe2 [43]. Given the appropriate device fabri-
cation, we believe that the rich landscape of Fermi sea
topology in BLG can indeed be extracted experimentally
in a ballistic Andreev junction by measuring δG21.

V. SUMMARY AND OUTLOOK

In this work, we presented both theoretical and numer-
ical studies to consolidate a recent proposal in Ref. [13]
which relates the topology of a two-dimensional Fermi
sea to the ballistic transport of Andreev bound states
(ABSs) in a superconducting π junction. To highlight
the significance of transport along the junction (i.e., be-
tween the two normal leads connected to the two ends
of the junction) we termed the proposed setup an An-
dreev junction. Reference [13] considered the limits of
adiabatic and ballistic transport in a narrow Andreev
junction of width W � ξ. In this case, the junction
hosts the minimal number of ABSs and the nonlocal
conductance G21(V1) is quantized to ce or ch (in units
of e2/h) for subgap bias eV1 ≷ 0. Here ce (ch) counts
the number of convex (concave) critical points on the
Fermi surface. While ce/h depends on the geometry of

the Fermi sea, as well as the orientation of the Andreev
junction relative to the Fermi sea, their difference gives
the Euler characteristic χF = ce−ch, which is an intrinsic
topological characterization of the Fermi sea. This moti-
vated us to introduce the rectified nonlocal conductance
δG21(V1) ≡ G21(V1)−G21(−V1), which is expected to be
quantized to χF . We referred to this effect as topological
Andreev rectification (TAR).

To evaluate the feasibility of observing TAR, we con-
sidered more general device geometries. We first provided
a scattering-matrix analysis which also incorporates wide
Andreev junctions (i.e., W & ξ) hosting multiple dis-
persive ABSs around each Fermi surface critical point.
The assumption of adiabaticity is then relaxed to allow
for backscatterings among counterpropagating ABSs as-
sociated to the same Fermi surface critical point, while
scattering between distinct Fermi surface critical points
is still assumed to be suppressed. We established that,
while G21 is no longer quantized for wide junctions, δG21

remains quantized to χF for small but finite bias, whereas
additional quantized plateaus in δG21 are observed at
larger bias. Our theoretical analysis is further supported
by numerical calculations using Kwant. We first simu-
lated nonlocal transport in Andreev junctions with a toy
model on a square lattice. Our simulations for a nar-
row linear junction, as well as for a wide linear junction,
confirm the predicted TAR effect. Furthermore, TAR is
also demonstrated for an Andreev junction in a point-
contact geometry. While such Andreev junctions cannot
be studied analytically, our numerical results clearly es-
tablish TAR as a robust phenomenon insensitive to both
real-space and momentum-space microscopic details.

Motivated by recent experimental progress on trans-
port and spectroscopic measurements in Josephson junc-
tions, we also simulated the TAR effect in realistic ma-
terials. Specifically, we considered a 2DEG in an InAs
quantum well and graphene, for which superconduct-
ing junctions have already been fabricated (for InAs, see
Refs. [16–19]; for graphene, see Refs. [34–36, 39–47]). Us-
ing experimentally relevant parameters, and assuming a
clean system, we examined the criteria for TAR to be
observed in these systems. For an InAs quantum well
proximitized by Al contacts (∆0 ≈ 0.2 meV) TAR is
seen for a junction length L & 3 µm when µ ∼ 10 meV
(counted from the band bottom). We find that the rec-
tified conductance δG21 is nearly quantized to χF = 2
(in units of e2/h) over a wide range of subgap bias volt-
ages. For monolayer graphene, we considered both Al
and Nb (or MoRe) contacts, where the latter induces a
larger gap ∆0 ≈ 1 meV. In this case, we considered a
device of dimensions 3×3 µm2 and observed TAR where
δG21 is now quantized to ±4e2/h for electron or hole
doping, respectively. Quantization of G21 to cee

2/h (for
eV1 > 0) and che

2/h (for eV1 < 0), which reflects the
Fermi sea geometry, is only obtained with Nb (or MoRe)
contacts, owing to a smaller coherence length that puts
our setup in the long-junction regime. Finally, for Bernal
bilayer graphene, which hosts a rich variety of Fermi sea
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topologies upon tuning the interlayer bias and chemical
potential, we demonstrate once again that δG21 serves as
a good marker of the Fermi sea topology. Our numerical
results thus indicate that both InAs quantum wells and
graphene are promising candidate platforms for observ-
ing topological Andreev rectification.

While our simulations have mostly used experimen-
tally relevant parameter values, we have largely ignored
the role of disorder. Our transport simulations are thus in
the ballistic regime and perfect quantization in both G21

and δG21 can be achieved for L� ξ, in accordance with
theoretical predictions. However, the current experimen-
tal status suggests that the electron mean free path `e is
of the order of ξ. We therefore believe that a major chal-
lenge for observing quantization in both G21 and δG21

lies in increasing the mobility in these platforms such
that `e becomes at least one order longer than ξ. Im-
portantly, however, achieving quantization in δG21 (i.e.,
TAR) is much easier than quantization in G21. As in-
dicated by our simulations, TAR is observed for shorter
junctions for which G21 is not quantized. Furthermore,
a linear junction geometry is not required, as TAR has
also been consistently demonstrated for Andreev point
contacts.

Finally, even if quantized topological Andreev rectifica-
tion cannot be observed in existing devices due to disor-
der, as long as the variation in chemical potential across
the sample is not so drastic to create multiple regions
with distinct Fermi sea topology (e.g., for graphene we

would require the absence of electron-hole puddles), the
signatures of Andreev rectification would still remain for
χF 6= 0. In particular, δG21 is expected to change drasti-
cally as the quantized value of χF jumps under a Lifshitz
transition of the underlying metal in the Andreev junc-
tion. In short, we believe that the topological Andreev
rectification effect is experimentally testable in the near
future.
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Appendix A: Landauer formalism

We consider a four-terminal setup with two normal
leads (leads N1 and N2) and two superconducting leads
(leads S1 and S2) as illustrated in Fig. 1 of the main text.
Here the bias at the normal leads is given by µ1 = eV1 and
µ2 = eV2 while the superconducting leads are grounded
with µS = 0. When transport is coherent across the
system, the current that flows into the normal leads is
given by [52, 53]

I1 = − e
h

∫ ∞
−∞

dε
{(
Me

1 − T ee11 + The11

)
[f0(ε− µ1)− f0(ε)] +

(
The12 − T ee12

)
[f0(ε− µ2)− f0(ε)]

}
, (A1)

I2 = − e
h

∫ ∞
−∞

dε
{(
Me

2 − T ee22 + The22

)
[f0(ε− µ2)− f0(ε)] +

(
The21 − T ee21

)
[f0(ε− µ1)− f0(ε)]

}
, (A2)

with e = −|e| the electron charge and f0(ε) =
1/ [exp (ε/kBT ) + 1] the Fermi-Dirac distribution func-
tion, where the excitation energy ε is defined relative to
the equilibrium chemical potential µ. Here we suppressed
the subscript N in the total (including spin) transmission
functions between the normal leads

Tαβij (ε) = Tr
[
(sαβij )†sαβij

]
, (A3)

with i, j = 1, 2 and α, β = e, h. The matrices sαβij
contain the amplitudes for scattering from β-type in-
cident modes in lead Nj to α-type outgoing modes in
lead Ni. In the subgap regime |ε| < ∆0, the total num-
ber of electron modes in the normal leads is given by
Me
i =

∑
j

(
T eeij + T ehij

)
. Note that electron-hole symme-

try implies T eeij (ε) = Thhij (−ε) and T ehij (ε) = Theij (−ε),
while reciprocity implies Tαβij (ε) = T

βα

ji (ε) where T is

calculated for the time-reversed system. The local and
nonlocal differential conductance are then, respectively,

G11 =
dI1
dV1

= −e
2

h

∫ ∞
−∞

dε
(
Me

1 − T ee11 + The11

)(
−df1

dε

)
,

(A4)

G21 =
dI2
dV1

=
e2

h

∫ ∞
−∞

dε
(
T ee21 − The21

)(
−df1

dε

)
, (A5)

where f1(ε) = f0(ε− µ1) with µi = eVi (i = 1, 2). In the
zero-temperature limit, we obtain

lim
T→0

G11 = −e
2

h

(
Me

1 − T ee11 + The11

)
ε=eV1

, (A6)

lim
T→0

G21 =
e2

h

(
T ee21 − The21

)
ε=eV1

. (A7)
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The rectificed nonlocal conductance is

δG21(V1) = G21(V1)−G21(−V1)

(T→0) =
e2

h

(
T ee21 − Thh21 − The21 + T eh21

)
ε=eV1

=
e2

h

(
T ee21 − Thh21 − The21 + T

he

12

)
ε=eV1

,

(A8)

where electron-hole symmetry and reciprocity have been
used. For a transport setup that is both time-reversal
symmetric and mirror symmetric along the transport di-
rection (i.e., under Mx : x 7→ −x for the setup shown

in Fig. 1 of the main text), we have T
he

12 = The12 = The21 ,
and hence contributions from crossed Andreev reflections
are canceled. The quantization in δG21, as established in
Sec. II B, still relies on having a long junction with L� ξ
so that T ee21 and Thh21 only contain contributions from the
dispersive ABSs (and not from tunneling).

Let us also compute the rectified local conductance
δG11 here, which is not studied explicitly in the main
text. Using Me

1 = T ee11 + The11 + T ee21 + The21 and electron-
hole symmetry, we have

δG11(V1) = G11(V1)−G11(−V1)

(T→0) = −e
2

h

(
2The11 − 2T eh11 + T ee21 − Thh21

+ The21 − T eh21

)
ε=eV1

.

(A9)

As before, reciprocity and time-reversal symmetry T give

The11 = T
eh

11 = T eh11 , such that the first two terms in Eq.
(A9) cancel each other. Hence, when T is preserved, we
have

δG21(V1) + δG11(V1) =
2e2

h

(
T eh21 − The21

)
, (A10)

δG21(V1)− δG11(V1) =
2e2

h

(
T ee21 − Thh21

)
. (A11)

When, in addition to T symmetry, Mx is preserved, we
have T eh21 = The21 and hence δG11 = −δG21. If Mx is
not present, but the junction is long enough such that
crossed Andreev reflection is suppressed, we also have
δG11 ≈ −δG21. Moreover, when T symmetry is broken
but MyT is conserved, using reciprocity, the relations
given in Eq. (A10) and Eq. (A11) still hold.

In this work we have focused on the nonlocal conduc-
tance G21 instead of the local conductance G11, as not
only is δG21 quantized to reflect the Fermi sea topology,
in the case of a narrow Andreev junction G21 is itself also
quantized to reflect the Fermi sea geometry.
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