Article (Périodiques scientifiques)
Metabolomic profiles in night shift workers: A cross-sectional study on hospital female nurses
Borroni, Elisa; FRIGERIO, Gianfranco; Polledri, Elisa et al.
2023In Frontiers in Public Health
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
fpubh-11-1082074.pdf
Postprint Éditeur (1.1 MB)
Full text
Télécharger
Annexes
Data_Sheet_1_Metabolomic profiles in night shift workers_ A cross-sectional study on hospital female nurses.ZIP
(1.16 MB)
Supplementary material
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
night shift work; nurses; targeted metabolomics; Tobit regression; machine-learning; Random Forest; occupational health
Résumé :
[en] Background and aim: Shift work, especially including night shifts, has been found associated with several diseases, including obesity, diabetes, cancers, and cardiovascular, mental, gastrointestinal and sleep disorders. Metabolomics (an omics-based methodology) may shed light on early biological alterations underlying these associations. We thus aimed to evaluate the effect of night shift work (NSW) on serum metabolites in a sample of hospital female nurses. Methods: We recruited 46 nurses currently working in NSW in Milan (Italy), matched to 51 colleagues not employed in night shifts. Participants filled in a questionnaire on demographics, lifestyle habits, personal and family health history and work, and donated a blood sample. The metabolome was evaluated through a validated targeted approach measuring 188 metabolites. Only metabolites with at least 50% observations above the detection limit were considered, after standardization and log-transformation. Associations between each metabolite and NSW were assessed applying Tobit regression models and Random Forest, a machine-learning algorithm. Results: When comparing current vs. never night shifters, we observed lower levels of 21 glycerophospholipids and 6 sphingolipids, and higher levels of serotonin (+171.0%, 95%CI: 49.1–392.7), aspartic acid (+155.8%, 95%CI: 40.8–364.7), and taurine (+182.1%, 95%CI: 67.6–374.9). The latter was higher in former vs. never night shifters too (+208.8%, 95%CI: 69.2–463.3). Tobit regression comparing ever (i.e., current + former) and never night shifters returned similar results. Years worked in night shifts did not seem to affect metabolite levels. The Random-Forest algorithm confirmed taurine and aspartic acid among the most important variables in discriminating current vs. never night shifters. Conclusions: This study, although based on a small sample size, shows altered levels of some metabolites in night shift workers. If confirmed, our results may shed light on early biological alterations that might be related to adverse health effects of NSW.
Disciplines :
Santé publique, services médicaux & soins de santé
Auteur, co-auteur :
Borroni, Elisa ;  University of Milan > Department of Clinical Sciences and Community Health
FRIGERIO, Gianfranco  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
Polledri, Elisa
Mercadante, Rosa
Maggioni, Cristina;  University of Milan > Department of Clinical Sciences and Community Health
Fedrizzi, Luca;  Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico > Occupational Health Unit
Pesatori, Angela Cecilia;  University of Milan > Department of Clinical Sciences and Community Health
Fustinoni, Silvia;  University of Milan > Department of Clinical Sciences and Community Health
Carugno, Michele;  University of Milan > Department of Clinical Sciences and Community Health
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Metabolomic profiles in night shift workers: A cross-sectional study on hospital female nurses
Date de publication/diffusion :
23 février 2023
Titre du périodique :
Frontiers in Public Health
eISSN :
2296-2565
Maison d'édition :
Frontiers, Lausanne, Suisse
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
This research was funded by the University of Milan (UNIMI - Piano Sostegno alla Ricerca Anno 2019 - Linea 2). GF was currently supported by the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. ACP was supported by the FNR.
Disponible sur ORBilu :
depuis le 23 février 2023

Statistiques


Nombre de vues
161 (dont 3 Unilu)
Nombre de téléchargements
73 (dont 1 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
7
citations OpenAlex
 
8
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu