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Background and aim: Shift work, especially including night shifts, has been

found associated with several diseases, including obesity, diabetes, cancers,

and cardiovascular, mental, gastrointestinal and sleep disorders. Metabolomics

(an omics-based methodology) may shed light on early biological alterations

underlying these associations. We thus aimed to evaluate the e�ect of night shift

work (NSW) on serum metabolites in a sample of hospital female nurses.

Methods: We recruited 46 nurses currently working in NSW in Milan (Italy),

matched to 51 colleagues not employed in night shifts. Participants filled in a

questionnaire on demographics, lifestyle habits, personal and family health history

and work, and donated a blood sample. The metabolome was evaluated through

a validated targeted approach measuring 188 metabolites. Only metabolites

with at least 50% observations above the detection limit were considered, after

standardization and log-transformation. Associations between each metabolite

and NSW were assessed applying Tobit regression models and Random Forest,

a machine-learning algorithm.

Results: When comparing current vs. never night shifters, we observed

lower levels of 21 glycerophospholipids and 6 sphingolipids, and higher levels

of serotonin (+171.0%, 95%CI: 49.1–392.7), aspartic acid (+155.8%, 95%CI:

40.8–364.7), and taurine (+182.1%, 95%CI: 67.6–374.9). The latter was higher

in former vs. never night shifters too (+208.8%, 95%CI: 69.2–463.3). Tobit

regression comparing ever (i.e., current + former) and never night shifters

returned similar results. Years worked in night shifts did not seem to a�ect

metabolite levels. The Random-Forest algorithm confirmed taurine and aspartic

acid among the most important variables in discriminating current vs. never

night shifters.

Conclusions: This study, although based on a small sample size, shows altered

levels of some metabolites in night shift workers. If confirmed, our results may

shed light on early biological alterations that might be related to adverse health

e�ects of NSW.
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1. Introduction

Shift work (SW) refers to any organization of work hours that

differ from the traditional diurnal work period (from 7:00 a.m.

to 6:00 p.m.) (1), including evening, night, and early morning

shifts, as well as fixed or rotating schedules (2, 3). In particular,

night shift work (NSW) refers to any kind of work that covers

at least 3 h of work between 11:00 p.m. and 6:00 a.m. (4, 5).

In industrialized countries, SW and NSW are common work

schedules (6). Indeed, according to the U.S. Bureau of Labor

Statistics,∼16% of employees surveyed in 2017–2018 followed SW

schedules, including 6% of evening shifts workers and 4% of night

shifts workers (7).

SW, especially if including night shifts, has been found

to be associated with several diseases, e.g., cardiovascular

diseases (8), cancers (9), metabolic disorders such as obesity

(10, 11) and type 2 diabetes (12, 13), sleep disturbances (14),

gastrointestinal disorders (15), and impaired mental health (16).

However, the underlying mechanisms are not fully understood.

Some might be mediated by psychosocial stress deriving from

interference with social rhythms, but there are indications

also suggesting that disruption of normal sleep-wake cycle

(circadian rhythm) following SW leads to neuroendocrine

and cardiometabolic stress, curtailed and disturbed sleep, and,

as a consequence, altered immune functioning and cellular

stress (17, 18).

In recent years, omics-based approaches have shown great

potential to shed light on mechanisms underlying diseases and

their possible association with exposure to relevant risk factors

through the identification of biomarkers. Metabolomics, one

of the omics-based methodologies, refers to the techniques

used to quantify the metabolites present within a cell, tissue

or organism (19). These techniques are mainly divided into

two strategies: i.e., untargeted and targeted metabolomics.

Targeted metabolomics is the measurement of defined groups

of chemically characterized and biochemically annotated

metabolites (20).

To our knowledge, only a few studies investigated the effects

of shift work on the human metabolome. One measured plasma

metabolites in 49 male workers at the beginning and end of

a rotating shift schedule including nights and observed an

association between NSW and alterations in several metabolites

(21). Two were laboratory studies aimed at evaluating the impact

of simulated 3- (22) and 4-day (23) night shift schedules on

the metabolic profile of healthy volunteers, with a particular

focus on sleep/wake and feeding/fasting cycles. Other two studies

compared shifters and non-shifters. The first one analyzed urinary

metabolites, and found altered long-chain acylcarnitines, three

amino acids, and one sphingomyelin (24) in night shift workers

as compared to day workers, based on both crude and adjusted

models. The second study evaluated serum metabolites and

identified 76 of them in shift workers (including L- tryptophan,

acylcarnitines, and several fatty acids) which may represent

important biomarkers of impaired lipid metabolism, leading to

weight gain and central obesity (25). As such, evidence on this

topic is still limited and further studies are needed. The aim

of the present study is thus to evaluate the effect of NSW on

serum metabolites in a sample of female nurses, using a targeted

metabolomics approach.

2. Materials and methods

2.1. Study population, personal data, and
biological samples

Procedures for recruitment of the study population and

collection of personal data and biological samples have been

described elsewhere (26). Briefly, 46 female nurses working in night

shifts at the Fondazione IRCCS Ca’ Granda Ospedale Maggiore

Policlinico in Milan, Italy, were recruited on a voluntary basis and

matched by age and length of services to 51 colleagues not working

in night shifts. Inclusion criteria were Caucasian ethnicity, age 30–

45 years and length of service ≥1 year. After signing informed

consent, all participants filled in a questionnaire on demographics,

lifestyle habits, personal and family health history, and work history

(with a particular focus on SW) and donated a 12mL blood sample.

The sample was drawn in the morning, at the end of the night

shift for night shifters (7:15–7:45 a.m.) and at the beginning of the

working day for day shifters (8:30–9:00 a.m.), to try to maximize

potential differences between the two groups. The metabolomics

profile (see below) could not be assessed for six subjects, and we

thus performed our analyses on a total of 91 nurses.

The study was conducted according to the guidelines of the

Declaration of Helsinki and approved by the Institutional Review

Board of the Policlinico Hospital (approval number 702_2015).

2.2. Metabolomic analysis

The metabolomic profile was assessed with a validated targeted

metabolomics approach, implementing liquid chromatography

coupled to tandem mass spectrometry (LC-MS/MS), and using the

AbsoluteIDQ p180 kit (Biocrates Life Sciences AG AbsoluteIDQ R©

p180 Kit, Innsbruck, Austria), which benefits of an established

good interlaboratory reproducibility (27). Briefly, the serum

samples were placed on a 96-well plate pre-loaded with the

isotopic labeled internal standards, along with a phosphate buffer

solution as blank sample, a calibration curve (7 levels), and

three levels of quality control samples. Two different plates were

implemented for this study. The sample preparation consisted in

the derivatization of amino acids and biogenic amines with phenyl

isothiocyanate, evaporation, extraction with 5mM ammonium

acetate in methanol, centrifugation, and dilution. Amino acids

and biogenic amines were separated and analyzed through an

analytical column before the mass spectrometry (LC-MS/MS),

while lipids and the hexose were analyzed with a simple flow

injection analysis (FIA-MS/MS). A total of 188 metabolites were

measured, including 21 amino acids, 21 biogenic amines, the

sum of hexoses, 40 acylcarnitine, 15 sphingolipids (SM), and 90

glycerophospholipids among which 14 lysophosphatidylcholines

(LysoPC), 38 diacylphosphatidylcholine (PC aa), and 38

acylalkylphosphatidylcholine (PC ae). Further instrumental

and analytical details have been previously reported (28).
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2.3. Statistical analysis

Differences in the distribution of the main adjustment variables

across categories of NSW were assessed through the analysis of

variance (ANOVA) for age and BMI (continuous) and chi-squared

test for smoking habit (categorical).

Metabolomic data (from both LC-MS/MS and FIA-MS/MS)

were batch-normalized through the MetIDQ software (Biocrates)

using, for each metabolite, the median values of three repetitions

of a quality control (reference sample) analyzed on the same

plate, according to the manufacturer’s instructions (29). Only

metabolites with at least 50% of the observations above the limit

of detection (LOD) were considered for the statistical analyses.

Among these, each remaining value below the LOD was replaced

with a value equal to the minimum LOD (specific for each

metabolite). Metabolite concentrations were then log-transformed

(base e) and standardized (each value subtracted by the mean and

divided by the standard deviation).

To visualize how metabolites correlate with each other, we

performed network analyses where metabolites were considered

as nodes, and correlation coefficients obtained from each pair

of metabolites as edges; the Fruchterman-Reingold force-directed

layout algorithm was used, and the values of r were set as

edge weights; only statistically significant correlations with r >

0.4 were considered and metabolites with no connection were

not considered.

To assess the association between each metabolite and NSW,

we applied Tobit censored linear regression models, which are

useful to estimate linear relationships when considering dependent

variables with left- or right-censoring (30, 31): in the present

work, we considered metabolite concentrations lower than LOD

as left-censored. We built a Tobit model for each metabolite, with

the metabolite concentration as dependent variable, and NSW

as the main independent variable. NSW was modeled both as

current or former vs. never NSW and as ever (i.e., current +

former) vs. never NSW. As a sensitivity analysis, we stratified

current night shifters according to their shift schedule (see below).

We also considered “number of years worked in night shifts”

as a variable of interest (equal to 0 in never night shifters).

Adjustment variables considered a priori as potential confounders

were body mass index (BMI) (kg/m2), age, plate (plate 1 or 2:

i.e., which of the two 96-well plates the serum sample was loaded

on during sample preparation for metabolomic analyses), and

smoking habit (current vs. former/never smokers). The models

assessing the association between metabolites and number of years

in night shifts also included the variable “never vs. ever night

shift.” Before implementing all models, we imputed the few values

missing from our database (one for age, three for BMI, three for

smoking habit) using the k-nearest neighbors algorithm (k-NN)

(32) with a k-value = 9 (32). From each model, we estimated the

standardized beta coefficients and calculated the percent variation

(1%) using the following formula: (exp(β)−1) x 100, where β is the

regression coefficient representing the variation in the metabolite

level for a unit increase in the independent variable. The p-

values were adjusted for multiple testing by controlling the false

discovery rate (FDR) according to the method of Benjamini and

Hochberg (33) and a FDR p-value lower than 0.1 was considered

statistically significant. To have a visual representation of the

Tobit models, Volcano plots were created, assigning a dot to

each molecule and plotting the 1% vs. the negative logarithm of

the FDR p-value.

A confirmatory analysis was also conducted applying a

supervised machine-learning algorithm called Random Forest

(RF). A RF consists of many unpruned individual decision trees

that operate as an ensemble. Individual trees are grown by

bootstrapping a random sample of the original data set and by

selecting at random, at each node, a small group of input variables

to split on. Results from different decision trees are, subsequently,

averaged to make final predictions (34). We used RF to classify

subjects into current or former vs. never night shifters and into

ever (i.e., current + former) vs. never night shifters, considering

correlations among metabolites.

K-fold cross-validation, a statistical method for evaluating a

machine-learning model and testing its performance, was applied

to assess RF performances and to tune parameters in order to

obtain optimal predictions. In the present study, based on 5-fold

cross-validation results, we implemented RF algorithms setting the

number of trees at 10,000, and the number of variables from which

to choose at each node at 11 (i.e., the approximate square root of

the total number of metabolites included in the analysis).

Variables importance scores were then calculated. They are RF-

derivedmeasures that facilitate results interpretation by ranking the

importance of each feature (i.e., metabolite), and can be computed

mainly through two methods: (1) Mean Decrease Accuracy,

indicating how much the accuracy (i.e., the number of data points

out of all data points which are correctly predicted) decreases

when the interested variable is excluded; and (2) Mean Decrease

Gini, indicating how much the Gini score (which calculates the

probability of a specific feature to be classified incorrectly when

selected at random) decreases when a variable is chosen to split a

node. The larger the scores, the greater the importance of a variable

(34). We evaluated variable importance, using both above-cited

methods, in order to produce more accurate results.

All statistical analyses were performed using R (R version 4.1.2,

R Foundation, Vienna, Austria) (35) with the Rstudio interface

(Version 1.4.1717, RStudio Inc., Boston, MA, USA) and the

packages “tidyverse” (36), “VIM,” “AER” (37), “tidygraph,” “ggraph”

(38, 39), and “randomForest” (40).

3. Results

Mean age of our study subjects was similar across categories of

night shift work, ranging from 35.1 years in current shift workers

to 36.8 years in former shift workers. The majority of current night

shifters (67%) followed a counterclockwise, very rapidly rotating

schedule (A), in details: day 1: morning (6:00 a.m.−2:00 p.m. or

7:00 a.m.−2:00 p.m.); day 2: either morning or afternoon (2:00

p.m.−10:00 p.m. or 2:00 p.m.−9:00 PM); day 3: both morning and

night (10:00 p.m.−6:00 a.m. or 9:00 p.m.−7:00 a.m.), followed by

three rest days (72 h). Eight nurses followed a clockwise, rapidly

rotating schedule (B), in details: day 1: morning (7:00 a.m.−2:00

p.m.); day 2: afternoon (2:00 p.m.−9:00 p.m.); day 3: night (9:00

p.m.−7:00 a.m.), followed by two or three rest days (48–72 h). Only

five nurses worked on a 12 h schedule (C): day – day – night

– (night) – rest – rest. For one subject the information was not
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TABLE 1 Characteristics of the study population stratified by categories

of night shift work.

Characteristic Never
night shift
workers

Former
night shift
workers

Current
night shift
workers

P
∗

N 26 22 43

Type of night shift work∗∗

Schedule A—N (%) - - 29 (67)

Schedule B—N (%) - - 8 (19)

Schedule C—N (%) - - 5 (12)

Missing—N (%) - - 1 (2)

Age

Mean± SD 36.6± 5.4 36.8± 5.4 35.1± 5.4 0.382

Missing 0 0 1

BMI

Mean± SD 21.4± 2.4 23.2± 3.9 23.1± 3.0 0.057

Missing 0 0 2

Smoking habit

Former/never

smokers—N (%)

21 (81) 14 (64) 27 (63)

Current smokers—N

(%)

5 (19) 7 (32) 14 (33) 0.389

Missing—N (%) 0 (-) 1 (4) 2 (4)

SD, standard deviation; ∗from ANOVA (age, BMI) and chi-squared test (smoking habit);
∗∗schedule A, counterclockwise, very rapidly rotating schedule; schedule B, clockwise, rapidly

rotating schedule; schedule C, 12 h schedule.

available. Never night shift workers had a lower BMI compared to

former and current shift workers (p = 0.057). Percent of current

smokers increased from 19% among never night shifters to about

33% in current night shifters (Table 1). Descriptive statistics of

metabolite concentrations are reported in Supplementary Table S1.

Network analysis (Supplementary Figure S1) mainly showed

that (i) metabolites belonging to the same category are highly

correlated, (ii) serotonin is correlated with taurine, and (iii) taurine

is also correlated with aspartic acid.

When comparing current vs. never night shift workers

(Figure 1A), 6 SM and several glycerophospholipids, among which

12 PC aa and 9 PC ae, were significantly decreased; while taurine,

serotonin, and aspartic acids were significantly increased (with a

percent variation of +182.1, +171.0, and +155.8%, respectively).

When comparing former vs. never night shift workers (Figure 1B),

only taurine emerged as a significantly different metabolite, with

a percent variation of +208.8%. The Tobit regression comparing

ever (i.e., current + former) vs. never night shift workers returned

similar results (Supplementary Figure S2). Comparable findings

were also observed when stratifying current night shifters by

shift schedule and focusing on nurses following schedule A

(Supplementary Figure S3A). Only four metabolites were found to

be significantly altered in night shift workers following schedule

B (Supplementary Figure S3B) while no alteration was observed

when inspecting shift schedule C (Supplementary Figure S3C).

No metabolite was found to be associated with increasing

number of years worked in night shifts (Supplementary Figure S4).

Complete results from Tobit regression models are reported in

Supplementary Table S2.

Figure 2A shows variable importance scores from the RF

algorithm for current vs. never night shift workers. Taurine and

aspartic acid were the most important variables discriminating

subjects in the two groups, according to both Mean Decrease

Accuracy and Mean Decrease Gini. Several PC aa and some PC

ae were found to be among the 30 most important metabolites.

Figure 2B reports variable importance scores for former vs. never

night shift workers: C12.1, aspartic acid and taurine were found to

be the threemost important metabolites, according to both indexes.

ADMA, and several PC aa, PC ae, and sphingolipids were also

observed among the 30 most important metabolites. Again, when

pooling current and former night shifters, we obtained similar

results (Supplementary Figure S5).

In Supplementary Table S3, 5-fold cross-validation results are

reported. RF performance was high in the analysis of current vs.

never night shift workers as both sensitivity and specificity were

above 0.80, while it was medium-low for former vs. never shifters.

When analyzing ever vs. never night shifters, sensitivity was 0.80

while specificity was 0.65.

4. Discussion

In the present study, we evaluated the association between

exposure to night shift work and metabolites levels, using a

targeted metabolomic approach, in a sample of 91 nurses.

In particular, when compared to never night shifters, current

night shift workers had higher levels of taurine, serotonin and

aspartic acid, while lower levels of several glycerophospholipids

and sphingolipids. Similar results were observed in ever night

shift workers, while the observed associations disappeared when

comparing former shift workers to never night shifters, except

for taurine levels. Findings across type of night shift schedule,

although mostly confirming the overall results, were hampered by

the very small number of subjects following schedules B and C.

Number of years worked in night shifts did not impact the levels

of metabolites.

Serummetabolites in shift workers were previously investigated

on 60 subjects from China (25). Shift workers had altered

levels of several lipids, including some glycerophospholipids and

sphingolipids, as observed in our study. However, authors also

found altered levels of some amines and androgens, and they did

not observe any change in serotonin and taurine levels. Differences

might relate to the fact that, in the Chinese study, shifters worked

two shifts not including the night (i.e., 7:00 a.m.−3:00 p.m.; 3:00

p.m.−11:00 p.m.): as such, their occupational exposure cannot

be directly compared to the one in our study. In addition, the

applied statistical techniques were different: Huang and colleagues

used linear regression models in combination with an Orthogonal

Projections to Latent Structures Discriminant Analysis (OPLS-

DA), while we used Tobit linear regression models in combination

with Random Forests.

A second study (21) investigating male workers, which rotated

through 3 weeks of night shifts (10:00 p.m.−6:00 a.m.), followed by

3 weeks of evening shifts (2:00 p.m.−10:00 p.m.) and 3 weeks of
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FIGURE 1

(A, B) Volcano plots showing the results of the Tobit linear regression models considering the metabolites (dependent variables) in relation to night

shift work: current vs. never night shift workers (A) and former vs. never night shift workers (B). The models are adjusted for BMI, age, plate, and

smoking habit. Each dot represents a metabolite and is displayed based on the percentage variation of its concentration (x-axis) vs. the negative

logarithm (base 10) of the FDR p-value (y-axis). The dashed line represents a FDR p-value equal to 0.1.

FIGURE 2

(A, B) Variable importance scores plots of the 30 most important metabolites in predicting current vs. never night shift workers (A) and former vs.

never night shift workers (B), according to both Mean Decrease Accuracy and Mean Decrease Gini.

early morning shifts (6:00 a.m.−2:00 p.m.), did observe alterations

in some lipids (e.g., glycerophospholipids and lysophospholipids)

associated with night shifts (i.e., somehow similarly to our results).

Nonetheless, the shift scheme is hardly comparable to that

experienced by our study population which, in addition, consists

of female workers only.
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Two other studies conducted in experimental settings

simulated night shifts protocols on a small number of healthy

volunteers and collected blood samples at repeated time points

(22, 23). Both concluded that the observed rhythmicity of several

metabolites was driven mainly by behaviors imposed by the

simulated shift schedule rather than by the central circadian

clock. Notwithstanding the peculiar differences characterizing the

experimental settings of these investigations, their findings do

confirm the relevant role of night shift work in influencing health,

in particular for what concerns metabolic imbalance.

We observed higher levels of taurine in both current and

former night shifters when compared to never night shifters. To

exclude this finding could be related to energy drink use, we

inspected the distribution of the available variable “drinks other

than coffee” and found no differences across categories of night shift

(chi-squared p-value = 0.78). Previous investigations documented

higher levels of taurine in both humans and rats during periods of

sleep deprivation (41–43), a condition typically related to night shift

work (44). In fact, it seems that increased levels of taurine activate

the extrasynaptic GABA (A) receptors in the mouse ventrobasal

thalamus (45), an area involved in the regulation of the transitions

between sleep and wakefulness (46).

Current night shifters showed also higher levels of serotonin.

This neurotransmitter is another important factor involved

in sleep/wake regulation, functioning primarily to promote

wakefulness (42). In addition, altered levels of both serotonin

and taurine have been found to be involved in depression

onset (47–49). This is particularly interesting in light of a

recent meta-analysis, which estimated a 33% increased risk of

depressive symptoms associated with shift work, that rose to

more than 70% when restricting the analyses to female workers

(16). In our study, we found serotonin to be positively associated

with night shift work in Tobit regression models only and

not in the Random Forests analysis: this inconsistency may be

explained by the high correlation existing between serotonin

and taurine.

Current night shift workers had lower levels of several

glycerophospholipids. Decreased levels of such lipids were also

found in the plasma sample of breast cancer patients (50), reflecting

a higher activity of phospholipase A2 (PLA2), an important

pro-inflammatory mediator (51). On the other hand, higher

concentrations of several glycerophospholipids were associated

with decreased risk of prostate cancer subtypes, especially those

in advanced stage (52). Positive associations between night shift

work and both these cancer types have been mentioned by IARC

in supporting the evaluation of NSW as probably carcinogenic to

humans (group 2A carcinogen) (5). Higher levels of phospholipids

were also documented by several investigations to be negatively

associated with metabolic diseases, as altered concentrations of

such lipids were found in subjects with dyslipidemia, hypertension,

obesity, insulin resistance or type 2 diabetes (53–58). In particular,

it was found that elevated levels of phosphatidylcholines showed

a possibly anti-inflammatory role under different conditions

(e.g., oxidative stress and ulcerative colitis) (59–61). Indeed,

phosphatidylcholines inhibit the upregulation of the inflammatory

cytokines tumor necrosis factor alpha and interleukin-6 as well

as the actin-assembly in phagosomes and macrophages (59,

61). In this multifaceted scenario, night shift work emerges as

a potentially relevant player in the development of metabolic

disorders and cancers.

Another class of lipids we found to be decreased in night

shift workers are the sphingolipids. Lower levels of sphingolipids

were found in patients with a diagnosis of major depressive

disorder: Demirkan and colleagues identified significant negative

associations between the sphingomyelin (SM) ratio 23:1 to

SM 16:0 and a psychometric depression measure (Center for

Epidemiological Studies-Depression Scale: CES-D) (62). However,

subsequent analysis of an independent replication dataset did not

confirm previous results. Another study from Liu and colleagues

found that several differential lipid species were significantly

correlated with depression severity measured by the Hamilton

Depression Scale (HAMD) (63). Moreover, rats exposed to chronic

stress had reduced sphingomyelin and dihydrosphingomyelin

levels in the prefrontal cortex (PFC) (64). This region vulnerability

fits with previous studies showing that PFC is the brain region

displaying major lipid alterations after the use of maprotiline, an

antidepressant. In our study population, only four subjects (ever

shifters) declared a prolonged use of psychotropic drugs (not better

specified). Decreased levels of sphingolipids were also found in

subjects with dyslipidemia (56) and with diabetes mellitus (53),

even if some other publications showed opposite results (54),

indicating that there is no clear pattern between sphingolipids and

metabolic disorders.

Levels of aspartic acid were found to be elevated in current shift

workers. This is a relative new result. Indeed, few publications on

elevated levels of aspartate were published. A study from Guevara-

Cruz conducted in Mexico found that levels of aspartate were

elevated in a 20-years-old population affected by obesity and insulin

resistance (65). Similar results were also found in a study conducted

by Yamada and colleagues, in a Japanese non-diabetic population

(66). Moreover, higher levels of aspartic acid were also found in

subjects with epilepsy, as compared to disease-free controls (67).

However, the available research is still too limited and further

studies are needed to draw robust conclusions.

The present study has some strengths. This is one of the

few studies investigating the effects of night shift work on

human serum metabolome. Blood samples were collected within

a relatively narrow time window (7:15–9:00 a.m.) to minimize

the 24-h variations of metabolites levels (68). Moreover, we

evaluated the investigated associations using two different statistical

methodologies (i.e., Tobit linear regression models and Random

Forests) to make more robust conclusions. The first ones allow

to adjust for individual confounders but are not able to consider

correlations among the different metabolites. On the contrary,

Random Forests are able to take into proper consideration

inter-metabolite correlations but not to adjust for individual

confounders. As such, the use of both methods provides a more

comprehensive picture of our findings. In addition, we considered

observations with non-determinable metabolite levels as left-

censored, and applied Tobit linear regression models which are

particularly adequate when dealing with dependent variables with

censored values (30).

This study has also some limitations. First, it is a cross-sectional

study, thus preventing to assess causality. Second, sample size is

relatively small, not allowing to obtain optimal prediction results in

the application of machine-learning algorithms and to thoroughly
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investigate the potential role of night shift schedule in influencing

our findings. Third, our sample was entirely composed of women,

preventing the possibility to detect sex-related differences which

have been previously observed with metabolomics data, even if

in experimental sleep-deprivation settings (42, 69). Fourth, all

variables including the exposure of interest (i.e., shift work status)

as well as all the confounders were self-reported, although the

absence of a pathologic outcome should allow to avoid major

distortions. Last, given the limited set of available information, we

were not able to fully disentangle whether the observed metabolic

alterations were related directly to NSW (i.e., by modification of the

endogenous circadian clock) or rather due to changes in behavioral

(e.g., sleep/wake or feeding/fasting) cycles.

In conclusion, our study, although based on a small sample

size, shows an alteration of metabolites levels in night shift workers

when compared to never night shifters. In particular, serum

concentrations of taurine, serotonin, and aspartic acid were higher,

while those of several glycerophospholipids and sphingolipids were

lower, independently from number of years worked in night shifts.

These findings may shed light on early biological alterations that

might be related to adverse health effects of NSW, such asmetabolic

disorders, cancers, and mental diseases. However, further studies

including a larger sample size and male workers are needed to

confirm our results.
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