Pas de texte intégral
Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Image Enhancement for Space Surveillance and Tracking
JAMROZIK, Michele Lynn; GAUDILLIERE, Vincent; MOHAMED ALI, Mohamed Adel et al.
2022In JAMROZIK, Michele Lynn; GAUDILLIERE, Vincent; Musallam, Mohamed Adel et al. (Eds.) Proceedings of the 73rd International Astronautical Congress
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Space Debris; Image enhancement; Deep Learning; Object tracking; Space; Artificial Intelligence; IAC-22; A6; x71536
Résumé :
[en] Images generated in space with monocular camera payloads suffer degradations that hinder their utility in precision tracking applications including debris identification, removal, and in-orbit servicing. To address the substandard quality of images captured in space and make them more reliable in space object tracking applications, several Image Enhancement (IE) techniques are investigated in this work. In addition, two novel space IE methods were developed. The first method called REVEAL, relies upon the application of more traditional image processing enhancement techniques and assumes a Retinex image formation model. A subsequent method, based on a UNet Deep Learning (DL) model was also developed. Image degradations addressed include blurring, exposure issues, poor contrast, and noise. The shortage of space-generated data suitable for supervised DL is also addressed. A visual comparison of both techniques developed was conducted and compared against the current state-of-the-art in DL-based IE methods relevant to images captured in space. It is determined in this work that both the REVEAL and the UNet-based DL solutions developed are well suited to correct for the degradations most often found in space images. In addition, it has been found that enhancing images in a pre-processing stage facilitates the subsequent extraction of object contours and metrics. By extracting information through image metrics, object properties such as size and orientation that enable more precise space object tracking may be more easily determined. Keywords: Deep Learning, Space, Image Enhancement, Space Debris
Centre de recherche :
University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > >
Disciplines :
Sciences informatiques
Auteur, co-auteur :
JAMROZIK, Michele Lynn ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
GAUDILLIERE, Vincent ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
MOHAMED ALI, Mohamed Adel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Image Enhancement for Space Surveillance and Tracking
Date de publication/diffusion :
2022
Nom de la manifestation :
International Astronautical Congress
Organisateur de la manifestation :
International Astronautical Federation
Lieu de la manifestation :
Paris, France
Date de la manifestation :
from 18-09-22 to 22-09-22
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 73rd International Astronautical Congress
Auteur, co-auteur :
Maison d'édition :
International Astronautical Federation, Paris, France
Focus Area :
Computational Sciences
Projet FnR :
FNR14755859 - Multi-modal Fusion Of Electro-optical Sensors For Spacecraft Pose Estimation Towards Autonomous In-orbit Operations, 2020 (01/01/2021-31/12/2023) - Djamila Aouada
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 23 février 2023

Statistiques


Nombre de vues
284 (dont 29 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0

Bibliographie


Publications similaires



Contacter ORBilu