[en] After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future.
Almahboub, S.A., Algaissi, A., Alfaleh, M.A., ElAssouli, M.Z., Hashem, A.M., Evaluation of neutralizing antibodies against highly pathogenic coronaviruses: A detailed protocol for a rapid evaluation of neutralizing antibodies using vesicular stomatitis virus pseudovirus-based assay. Frontiers in Microbiology, 11, 2020, 2020, 10.3389/fmicb.2020.02020.
Bewley, K.R., Coombes, N.S., Gagnon, L., McInroy, L., Baker, N., Shaik, I., et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nature Protocols 16:6 (2021), 3114–3140, 10.1038/s41596-021-00536-y.
Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M.M., et al. Syncytia formation by SARS-CoV-2-infected cells. The EMBO Journal, 40(3), 2021, e107405, 10.15252/embj.2020107405.
Cai, W., Tang, Z.M., Wen, G.P., Wang, S.L., Ji, W.F., Yang, M., et al. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus. Scientific Reports, 6, 2016, 25141, 10.1038/srep25141.
Case, J.B., Rothlauf, P.W., Chen, R.E., Liu, Z., Zhao, H., Kim, A.S., et al. Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. Cell Host & Microbe 28:3 (2020), 475–485 e475, 10.1016/j.chom.2020.06.021.
Chan, J.F., Kok, K.H., Zhu, Z., Chu, H., To, K.K., Yuan, S., et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections 9:1 (2020), 221–236, 10.1080/22221751.2020.1719902.
Cucinotta, D., Vanelli, M., WHO declares COVID-19 a pandemic. Acta-Biomedica 91:1 (2020), 157–160, 10.23750/abm.v91i1.9397.
Danh, K., Karp, D.G., Robinson, P.V., Seftel, D., Stone, M., Simmons, G., et al. Detection of SARS-CoV-2 neutralizing antibodies with a cell-free PCR assay. medRxiv, 2020, 10.1101/2020.05.28.20105692.
Dejnirattisai, W., Shaw, R.H., Supasa, P., Liu, C., Stuart, A.S., Pollard, A.J., et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet 399:10321 (2022), 234–236, 10.1016/S0140-6736(21)02844-0.
Deshpande, G.R., Sapkal, G.N., Tilekar, B.N., Yadav, P.D., Gurav, Y., Gaikwad, S., et al. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. The Indian Journal of Medical Research 152:1 & 2 (2020), 82–87, 10.4103/ijmr.IJMR_2382_20.
Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chemical Biology 11:2 (2016), 400–408, 10.1021/acschembio.5b00753.
Du, X., Tang, H., Gao, L., Wu, Z., Meng, F., Yan, R., et al. Omicron adopts a different strategy from Delta and other variants to adapt to host. Signal Transduction and Targeted Therapy, 7(1), 2022, 45, 10.1038/s41392-022-00903-5.
Du, L., Yang, Y., Zhang, X., Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular & Molecular Immunology 18:10 (2021), 2293–2306, 10.1038/s41423-021-00752-2.
Duarte, C.M., Ketcheson, D.I., Eguiluz, V.M., Agusti, S., Fernandez-Gracia, J., Jamil, T., et al. Rapid evolution of SARS-CoV-2 challenges human defenses. Scientific Reports, 12(1), 2022, 6457, 10.1038/s41598-022-10097-z.
Fenwick, C., Turelli, P., Pellaton, C., Farina, A., Campos, J., Raclot, C., et al. A high-throughput cell- and virus-free assay shows reduced neutralization of SARS-CoV-2 variants by COVID-19 convalescent plasma. Science Translational Medicine, 13(605), 2021, 10.1126/scitranslmed.abi8452.
Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama, M., et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591:7851 (2021), 639–644, 10.1038/s41586-021-03207-w.
Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chemical Biology 7:11 (2012), 1848–1857, 10.1021/cb3002478.
Han, D.P., Kim, H.G., Kim, Y.B., Poon, L.L., Cho, M.W., Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326:1 (2004), 140–149, 10.1016/j.virol.2004.05.017.
Herschhorn, A., Finzi, A., Jones, D.M., Courter, J.R., Sugawara, A., Smith, A.B. 3rd, et al. An inducible cell-cell fusion system with integrated ability to measure the efficiency and specificity of HIV-1 entry inhibitors. PLoS One, 6(11), 2011, e26731, 10.1371/journal.pone.0026731.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:2 (2020), 271–280 e278, 10.1016/j.cell.2020.02.052.
Hornich, B.F., Grosskopf, A.K., Schlagowski, S., Tenbusch, M., Kleine-Weber, H., Neipel, F., et al. SARS-CoV-2 and SARS-CoV spike-mediated cell-cell fusion differ in their requirements for receptor expression and proteolytic activation. Journal of Virology, 95(9), 2021, 10.1128/JVI.00002-21.
Huang, Y., Yang, C., Xu, X.F., Xu, W., Liu, S.W., Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica 41:9 (2020), 1141–1149, 10.1038/s41401-020-0485-4.
Israel, A., Shenhar, Y., Green, I., Merzon, E., Golan-Cohen, A., Schaffer, A.A., et al. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. Vaccines (Basel), 10(1), 2021, 10.3390/vaccines10010064.
Jaimes, J.A., Millet, J.K., Whittaker, G.R., Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience, 23(6), 2020, 101212, 10.1016/j.isci.2020.101212.
Janaka, S.K., Clark, N.M., Evans, D.T., Connor, J.P., Predicting the efficacy of COVID-19 convalescent plasma donor units with the lumit dx anti-receptor binding domain assay. medRxiv, 2021, 10.1101/2021.03.08.21253135.
Johnson, M., Wagstaffe, H.R., Gilmour, K.C., Mai, A.L., Lewis, J., Hunt, A., et al. Evaluation of a novel multiplexed assay for determining IgG levels and functional activity to SARS-CoV-2. Journal of Clinical Virology, 130, 2020, 104572, 10.1016/j.jcv.2020.104572.
Kim, Y., Jang, G., Lee, D., Kim, N., Seon, J.W., Kim, Y.H., et al. Trypsin enhances SARS-CoV-2 infection by facilitating viral entry. Archives of Virology 167:2 (2022), 441–458, 10.1007/s00705-021-05343-0.
Knezevic, I., Mattiuzzo, G., Page, M., Minor, P., Griffiths, E., Nuebling, M., et al. WHO International Standard for evaluation of the antibody response to COVID-19 vaccines: Call for urgent action by the scientific community. Lancet Microbe 3:3 (2022), e235–e240, 10.1016/S2666-5247(21)00266-4.
Krah, D.L., Amin, R.D., Nalin, D.R., Provost, P.J., A simple antigen-reduction assay for the measurement of neutralizing antibodies to hepatitis A virus. The Journal of Infectious Diseases 163:3 (1991), 634–637, 10.1093/infdis/163.3.634.
Kristiansen, P.A., Page, M., Bernasconi, V., Mattiuzzo, G., Dull, P., Makar, K., et al. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 397:10282 (2021), 1347–1348, 10.1016/S0140-6736(21)00527-4.
Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., et al. Coronavirus infections and immune responses. Journal of Medical Virology 92:4 (2020), 424–432, 10.1002/jmv.25685.
Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584:7821 (2020), 450–456, 10.1038/s41586-020-2571-7.
Luís, R., D'Uonnolo, G., Palmer, C.B., Meyrath, M., Uchański, T., Wantz, M., et al. Chapter 13—Nanoluciferase-based methods to monitor activation, modulation and trafficking of atypical chemokine receptors. Shukla, A.K., (eds.) Methods in Cell Biology, Vol. 169, 2022, Academic Press, 279–294.
Marin, M., Du, Y., Giroud, C., Kim, J.H., Qui, M., Fu, H., et al. High-throughput HIV-cell fusion assay for discovery of virus entry inhibitors. Assay and Drug Development Technologies 13:3 (2015), 155–166, 10.1089/adt.2015.639.
Mattiuzzo, G., Bentley, E.M., Hassall, M., Routley, S., Richardson, S., Bernasconi, V., et al. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 antibody (WHO/BS/2020/2403). 2020, World Health Organization.
Meng, B., Abdullahi, A., Ferreira, I., Goonawardane, N., Saito, A., Kimura, I., et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature, 2022, 10.1038/s41586-022-04474-x.
Mravinacova, S., Jonsson, M., Christ, W., Klingstrom, J., Yousef, J., Hellstrom, C., et al. A cell-free high throughput assay for assessment of SARS-CoV-2 neutralizing antibodies. New Biotechnology 66 (2022), 46–52, 10.1016/j.nbt.2021.10.002.
Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nature Protocols 15:11 (2020), 3699–3715, 10.1038/s41596-020-0394-5.
Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 2020, 1620, 10.1038/s41467-020-15562-9.
Palmer, C.B., D'Uonnolo, G., Luís, R., Meyrath, M., Uchański, T., Chevigné, A., et al. Chapter 15—Nanoluciferase-based complementation assay for systematic profiling of GPCR–GRK interactions. Shukla, A.K., (eds.) Methods in Cell Biology, Vol. 169, 2022, Academic Press, 309–321.
Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183:4 (2020), 1024–1042 e1021, 10.1016/j.cell.2020.09.037.
Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., et al. Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. Journal of Virology 82:7 (2008), 3220–3235, 10.1128/JVI.02377-07.
Sarzotti-Kelsoe, M., Daniell, X., Todd, C.A., Bilska, M., Martelli, A., LaBranche, C., et al. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. Journal of Immunological Methods 409 (2014), 147–160, 10.1016/j.jim.2014.02.013.
Saunders, N., Planas, D., Bolland, W.H., Rodriguez, C., Fourati, S., Buchrieser, J., et al. Fusogenicity and neutralization sensitivity of the SARS-CoV-2 delta sublineage AY.4.2. eBioMedicine, 77, 2022, 103934, 10.1016/j.ebiom.2022.103934.
Sehr, P., Rubio, I., Seitz, H., Putzker, K., Ribeiro-Muller, L., Pawlita, M., et al. High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS One, 8(10), 2013, e75677, 10.1371/journal.pone.0075677.
Sha, Y., Wu, Y., Cao, Z., Xu, X., Wu, W., Jiang, D., et al. A convenient cell fusion assay for the study of SARS-CoV entry and inhibition. IUBMB Life 58:8 (2006), 480–486, 10.1080/15216540600820974.
Snoeck, C.J., Vaillant, M., Abdelrahman, T., Satagopam, V.P., Turner, J.D., Beaumont, K., et al. Prevalence of SARS-CoV-2 infection in the Luxembourgish population—The CON-VINCE study. medRxiv, 2020, 10.1101/2020.05.11.20092916 2020.2005.2011.20092916.
Theuerkauf, S.A., Michels, A., Riechert, V., Maier, T.J., Flory, E., Cichutek, K., et al. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience, 24(3), 2021, 102170, 10.1016/j.isci.2021.102170.
Vacharathit, V., Srichatrapimuk, S., Manopwisedjaroen, S., Kirdlarp, S., Srisaowakarn, C., Setthaudom, C., et al. SARS-CoV-2 neutralizing antibodies decline over one year and patients with severe COVID-19 pneumonia display a unique cytokine profile. International Journal of Infectious Diseases 112 (2021), 227–234, 10.1016/j.ijid.2021.09.021.
Wajnberg, A., Amanat, F., Firpo, A., Altman, D.R., Bailey, M.J., Mansour, M., et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370:6521 (2020), 1227–1230, 10.1126/science.abd7728.
Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., Veesler, D., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 183(6), 2020, 1735, 10.1016/j.cell.2020.11.032.
Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proceedings of the National Academy of Sciences of the United States of America 114:42 (2017), 11157–11162, 10.1073/pnas.1708727114.
Wilmes, P., Zimmer, J., Schulz, J., Glod, F., Veiber, L., Mombaerts, L., et al. SARS-CoV-2 transmission risk from asymptomatic carriers: Results from a mass screening programme in Luxembourg. The Lancet Regional Health. Europe, 4, 2021, 100056, 10.1016/j.lanepe.2021.100056.
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:6483 (2020), 1260–1263, 10.1126/science.abb2507.
Xia, S., Lan, Q., Su, S., Wang, X., Xu, W., Liu, Z., et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 5(1), 2020, 92, 10.1038/s41392-020-0184-0.
York, J., Nunberg, J.H., A cell-cell fusion assay to assess arenavirus envelope glycoprotein membrane-fusion activity. Methods in Molecular Biology 1604 (2018), 157–167, 10.1007/978-1-4939-6981-4_10.
Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virology Journal, 10, 2013, 266, 10.1186/1743-422X-10-266.
Zhao, H., Lu, L., Peng, Z., Chen, L.L., Meng, X., Zhang, C., et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerging Microbes & Infections 11:1 (2022), 277–283, 10.1080/22221751.2021.2023329.
Zhao, M., Su, P.Y., Castro, D.A., Tripler, T.N., Hu, Y., Cook, M., et al. Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathogens, 17(6), 2021, e1009683, 10.1371/journal.ppat.1009683.
Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America 104:29 (2007), 12123–12128, 10.1073/pnas.0701000104.
Zou, J., Xia, H., Xie, X., Kurhade, C., Machado, R.R.G., Weaver, S.C., et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nature Communications, 13(1), 2022, 852, 10.1038/s41467-022-28544-w.