[en] Typically, magnetic phenomena result from the spontaneous order of the sublattices. Here, the cross-talk of two magnetic ions gives rise to an intrinsic, yet non-spontaneous ordering and manifests as emergent strong spin-phonon coupling in SmFeO3. Many material properties such as superconductivity, magnetoresistance or magnetoelectricity emerge from the non-linear interactions of spins and lattice/phonons. Hence, an in-depth understanding of spin-phonon coupling is at the heart of these properties. While most examples deal with one magnetic lattice only, the simultaneous presence of multiple magnetic orderings yield potentially unknown properties. We demonstrate a strong spin-phonon coupling in SmFeO3 that emerges from the interaction of both, iron and samarium spins. We probe this coupling as a remarkably large shift of phonon frequencies and the appearance of new phonons. The spin-phonon coupling is absent for the magnetic ordering of iron alone but emerges with the additional ordering of the samarium spins. Intriguingly, this ordering is not spontaneous but induced by the iron magnetism. Our findings show an emergent phenomenon from the non-linear interaction by multiple orders, which do not need to occur spontaneously. This allows for a conceptually different approach in the search for yet unknown properties.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
GUENNOU, Mael ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Evans, Donald M.; Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England.
TOULOUSE, Constance ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Emerging spin-phonon coupling through cross-talk of two magnetic sublattices
Publication date :
2022
Journal title :
NATURE COMMUNICATIONS
Publisher :
Nature Portfolio, Berlin, Unknown/unspecified
Volume :
13
Issue :
1
Pages :
443-7
Peer reviewed :
Peer reviewed
Funders :
SNSF [200021_178825, CRSK-2_196061] European Research Council [694955-INSEETO] Fond National de Recherche Luxembourg through a PEARL grant [FNR/P12/4853155/Kreisel] Fond National de Recherche Luxembourg through INTER mobility grant [INTER/Mobility/19/13992074] Fond National de Recherche Luxembourg through project EXPAND [ANR-17-CE24-0032] SNF Ambizione grant [PZ00P2_180035] Natural Environment Research Council [NE/B505738/1, NE/F017081/1] Engineering and Physical Sciences Research Council [EP/I036079/1, EP/P024904/1] National Natural Science Foundation of China (NSFC) [12074242, 51911530124] Science and Technology Commission of Shanghai Municipality [21JC1402600]
Commentary :
The authors thank Christian Tzschaschel, Steven Huband and Inmaculada Peral Alonso for fruitful discussions. MCW and MF are grateful for financial support from the SNSF (Grant No. 200021_178825), European Research Council (Advanced Grant 694955-INSEETO), MCW also for the support from the SNSF Spark funding CRSK-2_196061. MCW, MG, CT and JK acknowledge financial support from the Fond National de Recherche Luxembourg through a PEARL grant (FNR/P12/4853155/Kreisel), BD through an INTER mobility grant (INTER/Mobility/19/13992074) and the project EXPAND (ANR-17-CE24-0032) and AS and YK through the SNF Ambizione PZ00P2_180035 grant. RUS facilities were established and supported through grants from the Natural Environment Research Council (NE/B505738/1, NE/F017081/1) and the Engineering and Physical Sciences Research Council (EP/I036079/1, EP/P024904/1) awarded to MAC. SC and WR are grateful for financial support from the National Natural Science Foundation of China (NSFC, Nos. 12074242, 51911530124), and the Science and Technology Commission of Shanghai Municipality (No.21JC1402600).
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Bousquet, E. & Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 28, 123001 (2016).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Ideue, T., Kurumaji, T., Ishiwata, S. & Tokura, Y. Giant thermal Hall effect in multiferroics. Nat. Mater. 16, 797–802 (2017).
Cazorla, C., Diéguez, O. & Íñiguez, J. Multiple structural transitions driven by spin-phonon couplings in a perovskite oxide. Sci. Adv. 3, e1700288 (2017).
Belov, K. P., Zvezdin, A. K., Kadomtseva, A. M. & Levitin, R. Z. Spin-reorientation transitions in rare-earth magnets. Sov. Phys. Uspekhi 19, 574 (1976).
White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969).
Artyukhin, S. et al. Solitonic lattice and Yukawa forces in the rare-earth orthoferrite TbFeO3. Nat. Mater. 11, 694–699 (2012).
Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009).
Tokunaga, Y., Taguchi, Y., Arima, T. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).
Leo, N. et al. Magnetoelectric inversion of domain patterns. Nature 560, 466–470 (2018).
Hassanpour, E. et al. Interconversion of multiferroic domains and domain walls. Nat. Commun. 12, 2755 (2021).
Evans, D. M., Garcia, V., Meier, D. & Bibes, M. Domains and domain walls in multiferroics. Phys. Sci. Rev. 5, 1–23 (2020).
Zhao, H. J., Íñiguez, J., Chen, X. M. & Bellaiche, L. Origin of the magnetization and compensation temperature in rare-earth orthoferrites and orthochromates. Phys. Rev. B 93, 014417 (2016).
Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B 28, 3384–3392 (1972).
Bertaut, E. F. Spin Configurations of Ionic Structures: Theory and Practice. in Spin Arrangements and Crystal Structure, Domains, and Micromagnetics (eds. Rado, G. T. & Suhl, H.) 149–209 (Elsevier, 1963). 10.1016/B978-0-12-575303-6.50011-7
Marshall, L. G. et al. Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal. Phys. Rev. B 86, 064417 (2012).
Jeong, Y. K., Lee, J.-H., Ahn, S.-J. & Jang, H. M. Temperature-induced magnetization reversal and ultra-fast magnetic switch at low field in SmFeO3. Solid State Commun. 152, 1112–1115 (2012).
Cao, S., Zhao, H., Kang, B., Zhang, J. & Ren, W. Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep. 4, 5960 (2015).
Staub, U. et al. Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3. Phys. Rev. B 96, 174408 (2017).
Warshi, M. K. et al. Cluster glass behavior in orthorhombic SmFeO3 perovskite: Interplay between spin ordering and lattice dynamics. Chem. Mater. 32, 1250–1260 (2020).
Weber, M. C. et al. Multiple strain-induced phase transitions in LaNiO3 thin films. Phys. Rev. B 94, 014118 (2016).
Evans, D. M., Schiemer, J. A., Schmidt, M., Wilhelm, H. & Carpenter, M. A. Defect dynamics and strain coupling to magnetization in the cubic helimagnet Cu2OSeO3. Phys. Rev. B 95, 094426 (2017).
Weber, M. C. et al. Raman spectroscopy of rare-earth orthoferrites RFeO3 (R = La, Sm, Eu, Gd, Tb, Dy). Phys. Rev. B 94, 214103 (2016).
Kroumova, E. et al. Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Transit. 76, 155–170 (2003).
Sarrao, J. L. & Migliori, A. Resonant Ultrasound Spectroscopy: Applications to physics, material measurements and nondestructive evaluation. (John Wiley and Sons Ltd, 1997).
Carpenter, M. A. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J. Phys. Condens. Matter 27, 263201 (2015).
Pavlovska, O., Vasylechko, L. & Buryy, O. Thermal behaviour of Sm0.5R0.5FeO3 (R = Pr, Nd) probed by high-resolution X-ray synchrotron powder diffraction. Nanoscale Res. Lett. 11, 107 (2016).
Srinu Bhadram, V., Rajeswaran, B., Sundaresan, A. & Narayana, C. Spin-phonon coupling in multiferroic RCrO3 (R-Y, Lu, Gd, Eu, Sm): a Raman study. EPL 101, 17008 (2013).
Laverdière, J., Jandl, S., Mukhin, A., Ivanov, V. & Iliev, M. Spin-phonon coupling in orthorhombic RMnO3 (R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y): a Raman study. Phys. Rev. B 73, 214301 (2006).
Berini, B. et al. High temperature phase transitions and critical exponents of Samarium orthoferrite determined by in situ optical ellipsometry. J. Appl. Phys. 111, 053923 (2012).
Tsymbal, L. T. et al. Magnetic and structural properties of spin-reorientation transitions in orthoferrites. J. Appl. Phys. 101, 123919 (2007).
Tsymbal, L. T., Kamenev, V. I., Bazaliy, Y. B., Khara, D. A. & Wigen, P. E. Structural properties of ErFeO3 in the spin-reorientation region. Phys. Rev. B 72, 052413 (2005).
Doroshev, V. D. et al. NMR investigation of spin reorientation nature in thulium orthoferrite. Phys. Stat. Sol. 51, K31 (1972).
Kovtun, N. M., Karnachev, A., Solov’ev, E. E., Chervonenkis, A. Y. & Shemyakov, A. A. NMR study of spin reorientation in the weak ferromagnet ErFeO3. Sov. Phys. Solid State 14, 1856 (1973).
Lockwood, D. J. & Cottam, M. G. The spin-phonon interaction in FeF2 and MnF2 studied by Raman spectroscopy. J. Appl. Phys. 64, 5876–5878 (1988).
Damen, T., Porto, S. & Tell, B. Raman effect in zinc oxide. Phys. Rev. 142, 570–574 (1966).
Balbashov, A. M., Kozlov, G. V., Mukhin, A. A. & Prokhorov, A. S. Submillimeter Spectroscopy of antiferromagnetic dielectrics. Rare-earth Orthoferrites. in High Frequency Processes in Magnetic Materials (eds. Srinivasan, G. & Slavin, A. N.) 56–98 (WORLD SCIENTIFIC, 1995). 10.1142/9789812813008_0002
Kozlov, G. et al. Observation of magnetic dipole and electric dipole electron transitions in the ground multiplet of the rare-earth ion in TmFeO3. JETP Lett. 52, 264–269 (1990).
Mukhin, A. A. et al. Submillimeter and far IR spectroscopy of magneto- and electrodipolar rare-earth modes in the orthoferrite TmFeO3. Phys. Lett. A 153, 499–504 (1991).
Malozemoff, A. P. The optical spectrum and magnetic properties of TmFeO3 in the single-ion model. J. Phys. Chem. Solids 32, 1669–1685 (1971).
Smith, B. T., Yamamoto, J. & Belli, E. E. Far-infrared transmittance of Tb, Ho, Tm, Er, and Yb orthoferrite. J. Opt. Soc. Am. 65, 605 (1975).
Volkov, A. A., Goncharov, Y. G., Kozlov, G. V., Lebedev, S. P. & Prokhorov, A. M. Dielectric measurements in the submillimeter wavelength region. Infrared Phys. 25, 369–373 (1985).
Takahashi, Y. et al. Evidence for an electric-dipole active continuum band of spin excitations in multiferroic TbMnO3. Phys. Rev. Lett. 101, 187201 (2008).
Mihailova, B. et al. Temperature-dependent Raman spectra of HoMn2O5 and TbMn2O5. Phys. Rev. B 71, 172301 (2005).
Valdés Aguilar, R., Sushkov, A. B., Park, S., Cheong, S.-W. & Drew, H. D. Infrared phonon signatures of multiferroicity in TbMn2O5. Phys. Rev. B 74, 184404 (2006).
Mansouri, S. et al. Raman and crystal field studies of Tb-O bonds in TbMn2O5. Phys. Rev. B 94, 115109 (2016).
García-Flores, A. F. et al. Anomalous phonon shifts in the paramagnetic phase of multiferroic RMn2O5 (R=Bi, Eu, Dy): Possible manifestations of unconventional magnetic correlations. Phys. Rev. B 73, 104411 (2006).
Iliev, M. N., Gospodinov, M. M. & Litvinchuk, A. P. Raman spectroscopy of MnWO4. Phys. Rev. B 80, 212302 (2009).
Rovillain, P. et al. Magnetoelectric excitations in multiferroic TbMnO3 by Raman scattering. Phys. Rev. B 81, 054428 (2010).
Panchwanee, A. et al. Low-temperature Raman, high magnetic field Fe57 Mössbauer, and x-ray diffraction study of magnetodielectric coupling in polycrystalline GdFeO3. Phys. Rev. B 99, 064433 (2019).
McKnight, R. E. A., Carpenter, M. A., Darling, T. W., Buckley, A. & Taylor, P. A. Acoustic dissipation associated with phase transitions in lawsonite, CaAl2Si2O7(OH)2 • H2O. Am. Mineral. 92, 1665–1672 (2007).
McKnight, R. E. A. et al. Grain size dependence of elastic anomalies accompanying the α–β phase transition in polycrystalline quartz. J. Phys. Condens. Matter 20, 075229 (2008).
Weber, M. C. et al. Data set to ‘Emerging spin-phonon coupling through cross-talk of two magnetic sublattices’. Res. Collect. ETH Zurich 10.3929/ethz-b-000512405 (2021).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.