[en] Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Disciplines :
Neurologie
Auteur, co-auteur :
Paolicelli, Rosa C.
Sierra, Amanda
Stevens, Beth
Tremblay, Marie-Eve
Aguzzi, Adriano
Ajami, Bahareh
Amit, Ido
Audinat, Etienne
Bechmann, Ingo
Bennett, Mariko
Bennett, Frederick
Bessis, Alain
Biber, Knut
Bilbo, Staci
Blurton-Jones, Mathew
Boddeke, Erik
Brites, Dora
Brône, Bert
Brown, Guy C.
Butovsky, Oleg
Carson, Monica J.
Castellano, Bernardo
Colonna, Marco
Cowley, Sally A.
Cunningham, Colm
Davalos, Dimitrios
De Jager, Philip L.
de Strooper, Bart
Denes, Adam
Eggen, Bart J. L.
Eyo, Ukpong
Galea, Elena
Garel, Sonia
Ginhoux, Florent
Glass, Christopher K.
Gokce, Ozgun
Gomez-Nicola, Diego
González, Berta
Gordon, Siamon
Graeber, Manuel B.
Greenhalgh, Andrew D.
Gressens, Pierre
Greter, Melanie
Gutmann, David H.
Haass, Christian
HENEKA, Michael ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Stafleu, F.A., Linnaeus and the Linnaeans: The Spreading of their Ideas in Systematic Botany, 1735-1789. 1971, A. Oosthoek's Uitgeversmaatschappij.
Charmaz, K., The power of names. J. Contemp. Ethnogr. 35 (2006), 396–399, 10.1177/0891241606286983.
Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S.H., Onai, N., Schraml, B.U., Segura, E., Tussiwand, R., Yona, S., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14 (2014), 571–578, 10.1038/nri3712.
Murray, P.J., Allen, J., Biswas, S., Fisher, E., Gilroy, D., Goerdt, S., Gordon, S., Hamilton, J., Ivashkiv, L., Lawrence, T., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41 (2014), 14–20, 10.1016/j.immuni.2014.06.008.
Yuste, R., Hawrylycz, M., Aalling, N., Aguilar-Valles, A., Arendt, D., Armananzas, R., Ascoli, G.A., Bielza, C., Bokharaie, V., Bergmann, T.B., et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23 (2020), 1456–1468, 10.1038/s41593-020-0685-8.
Escartin, C., Galea, E., Lakatos, A., O'Callaghan, J.P., Petzold, G.C., Serrano-Pozo, A., Steinhauser, C., Volterra, A., Carmignoto, G., Agarwal, A., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24 (2021), 312–325, 10.1038/s41593-020-00783-4.
Sierra, A., Paolicelli, R.C., Kettenmann, H., Cien anos de microglia: Milestones in a century of microglial research. Trends Neurosci. 42 (2019), 778–792, 10.1016/j.tins.2019.09.004.
Rezaie, P., Hanisch, U.-K., Historical context. Tremblay, M.E., Sierra, A., (eds.) Microglia in Health and Disease, 2014, Springer, 7–46.
Río-Hortega, P., El tercer elemento de los centros nerviosos. III. Naturaleza probable de la microglía. Bol. Soc. Esp. Biol. 9 (1919), 108–120.
Oehmichen, M., Are resting and/or reactive microglia macrophages?. Immunobiology 161 (1982), 246–254, 10.1016/S0171-2985(82)80080-6.
Alliot, F., Godin, I., Pessac, B., Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117 (1999), 145–152, 10.1016/s0165-3806(99)00113-3.
Xu, J., Zhu, L., He, S., Wu, Y., Jin, W., Yu, T., Qu, J., Wen, Z., Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev. Cell 34 (2015), 632–641, 10.1016/j.devcel.2015.08.018.
Ferrero, G., Mahony, C.B., Dupuis, E., Yvernogeau, L., Di Ruggiero, E., Miserocchi, M., Caron, M., Robin, C., Traver, D., Bertrand, J.Y., Wittamer, V., Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep. 24 (2018), 130–141, 10.1016/j.celrep.2018.05.066.
Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F., Conway, S.J., Ng, L.G., Stanley, E.R., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330 (2010), 841–845, 10.1126/science.1194637.
Schulz, C., Perdiguero, E.G., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M., Wu, B., Jacobsen, S.E.W., Pollard, J.W., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336 (2012), 86–90, 10.1126/science.1219179.
Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E.G., Wieghofer, P., Heinrich, A., Riemke, P., Holscher, C., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16 (2013), 273–280, 10.1038/nn.3318.
Stremmel, C., Schuchert, R., Wagner, F., Thaler, R., Weinberger, T., Pick, R., Mass, E., Ishikawa-Ankerhold, H.C., Margraf, A., Hutter, S., et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun., 9, 2018, 75, 10.1038/s41467-017-02492-2.
Andjelkovic, A.V., Nikolic, B., Pachter, J.S., Zecevic, N., Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res. 814 (1998), 13–25, 10.1016/s0006-8993(98)00830-0.
Chitu, V., Gokhan, S., Nandi, S., Mehler, M.F., Stanley, E.R., Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39 (2016), 378–393, 10.1016/j.tins.2016.03.005.
Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A.A., Weimer, R.M., CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol., 10, 2019, 2199, 10.3389/fimmu.2019.02199.
Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W., Rossi, F.M., Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10 (2007), 1538–1543, 10.1038/nn2014.
Bruttger, J., Karram, K., Wortge, S., Regen, T., Marini, F., Hoppmann, N., Klein, M., Blank, T., Yona, S., Wolf, Y., et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43 (2015), 92–106, 10.1016/j.immuni.2015.06.012.
Huang, Y., Xu, Z., Xiong, S., Qin, G., Sun, F., Yang, J., Yuan, T.F., Zhao, L., Wang, K., Liang, Y.X., et al. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov., 4, 2018, 9, 10.1038/s41421-018-0011-8.
Huang, Y., Xu, Z., Xiong, S., Sun, F., Qin, G., Hu, G., Wang, J., Zhao, L., Liang, Y.X., Wu, T., et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21 (2018), 530–540, 10.1038/s41593-018-0090-8.
Zhan, L., Krabbe, G., Du, F., Jones, I., Reichert, M.C., Telpoukhovskaia, M., Kodama, L., Wang, C., Cho, S., Sayed, F., et al. Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biol., 17, 2019, e3000134, 10.1371/journal.pbio.3000134.
Cronk, J.C., Filiano, A.J., Louveau, A., Marin, I., Marsh, R., Ji, E., Goldman, D.H., Smirnov, I., Geraci, N., Acton, S., et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215 (2018), 1627–1647, 10.1084/jem.20180247.
Priller, J., Flugel, A., Wehner, T., Boentert, M., Haas, C.A., Prinz, M., Fernandez-Klett, F., Prass, K., Bechmann, I., de Boer, B.A., et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7 (2001), 1356–1361, 10.1038/nm1201-1356.
Xu, Z., Rao, Y., Huang, Y., Zhou, T., Feng, R., Xiong, S., Yuan, T.F., Qin, S., Lu, Y., Zhou, X., et al. Efficient Strategies for Microglia Replacement in the Central Nervous System. Cell Rep., 32, 2020, 108041, 10.1016/j.celrep.2020.108041.
Xu, Z., Zhou, X., Peng, B., Rao, Y., Microglia replacement by bone marrow transplantation (Mr BMT) in the central nervous system of adult mice. STAR Protoc., 2, 2021, 100666, 10.1016/j.xpro.2021.100666.
Xu, Z., Rao, Y., Peng, B., Protocol for microglia replacement by peripheral blood (Mr PB). STAR Protoc., 2, 2021, 100613, 10.1016/j.xpro.2021.100613.
Xu, R., Li, X., Boreland, A.J., Posyton, A., Kwan, K., Hart, R.P., Jiang, P., Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun., 11, 2020, 1577, 10.1038/s41467-020-15411-9.
Hasselmann, J., Coburn, M.A., England, W., Figueroa Velez, D.X., Kiani Shabestari, S., Tu, C.H., McQuade, A., Kolahdouzan, M., Echeverria, K., Claes, C., et al. Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo. Neuron 103 (2019), 1016–1033.e10, 10.1016/j.neuron.2019.07.002.
Mancuso, R., Van Den Daele, J., Fattorelli, N., Wolfs, L., Balusu, S., Burton, O., Liston, A., Sierksma, A., Fourne, Y., Poovathingal, S., et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat. Neurosci. 22 (2019), 2111–2116, 10.1038/s41593-019-0525-x.
Grabert, K., Sehgal, A., Irvine, K.M., Wollscheid-Lengeling, E., Ozdemir, D.D., Stables, J., Luke, G.A., Ryan, M.D., Adamson, A., Humphreys, N.E., et al. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. J. Immunol. 205 (2020), 3154–3166, 10.4049/jimmunol.2000835.
Kaiser, T., Feng, G., Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia. eNeuro, 6, 2019, ENEURO.0448-18.2019, 10.1523/ENEURO.0448-18.2019.
Chappell-Maor, L., Kolesnikov, M., Kim, J., Shemer, A., Haimon, Z., Grozovski, J., Boura-Halfon, S., Masuda, T., Prinz, M., Jung, S., Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study. Eur. J. Immunol. 50 (2020), 353–362, 10.1002/eji.201948342.
McKinsey, G.L., Lizama, C.O., Keown-Lang, A.E., Niu, A., Santander, N., Larpthaveesarp, A., Chee, E., Gonzalez, F.F., Arnold, T.D., A new genetic strategy for targeting microglia in development and disease. Elife, 9, 2020, e54590, 10.7554/eLife.54590.
Masuda, T., Amann, L., Sankowski, R., Staszewski, O., Lenz, M., d'Errico, P., Snaidero, N., Costa Jordao, M.J., Bottcher, C., Kierdorf, K., et al. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21 (2020), 802–815, 10.1038/s41590-020-0707-4.
Yona, S., Kim, K.W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., Guilliams, M., Misharin, A., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38 (2013), 79–91, 10.1016/j.immuni.2012.12.001.
Kim, J.S., Kolesnikov, M., Peled-Hajaj, S., Scheyltjens, I., Xia, Y., Trzebanski, S., Haimon, Z., Shemer, A., Lubart, A., Van Hove, H., et al. A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity 54 (2021), 176–190.e177, 10.1016/j.immuni.2020.11.007.
Goldmann, T., Wieghofer, P., Jordao, M.J.C., Prutek, F., Hagemeyer, N., Frenzel, K., Amann, L., Staszewski, O., Kierdorf, K., Krueger, M., et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17 (2016), 797–805, 10.1038/ni.3423.
Van Hove, H., Martens, L., Scheyltjens, I., De Vlaminck, K., Pombo Antunes, A.R., De Prijck, S., Vandamme, N., De Schepper, S., Van Isterdael, G., Scott, C.L., et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22 (2019), 1021–1035, 10.1038/s41593-019-0393-4.
Masuda, T., Amann, L., Monaco, G., Sankowski, R., Staszewski, O., Krueger, M., Del Gaudio, F., He, L., Paterson, N., Nent, E., et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604 (2022), 740–748, 10.1038/s41586-022-04596-2.
Paolicelli, R.C., Ferretti, M.T., Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front. Synaptic Neurosci., 9, 2017, 9, 10.3389/fnsyn.2017.00009.
Green, K.N., Crapser, J.D., Hohsfield, L.A., To Kill a Microglia: A Case for CSF1R Inhibitors. Trends Immunol. 41 (2020), 771–784, 10.1016/j.it.2020.07.001.
Chitu, V., Gokhan, S., Stanley, E.R., Modeling CSF-1 receptor deficiency diseases - how close are we?. FEBS J. 289 (2021), 5049–5073, 10.1111/febs.16085.
Oosterhof, N., Chang, I.J., Karimiani, E.G., Kuil, L.E., Jensen, D.M., Daza, R., Young, E., Astle, L., van der Linde, H.C., Shivaram, G.M., et al. Homozygous Mutations in CSF1R Cause a Pediatric-Onset Leukoencephalopathy and Can Result in Congenital Absence of Microglia. Am. J. Hum. Genet. 104 (2019), 936–947, 10.1016/j.ajhg.2019.03.010.
Guo, L., Bertola, D.R., Takanohashi, A., Saito, A., Segawa, Y., Yokota, T., Ishibashi, S., Nishida, Y., Yamamoto, G.L., Franco, J.F.S., et al. Bi-allelic CSF1R Mutations Cause Skeletal Dysplasia of Dysosteosclerosis-Pyle Disease Spectrum and Degenerative Encephalopathy with Brain Malformation. Am. J. Hum. Genet. 104 (2019), 925–935, 10.1016/j.ajhg.2019.03.004.
Rojo, R., Raper, A., Ozdemir, D.D., Lefevre, L., Grabert, K., Wollscheid-Lengeling, E., Bradford, B., Caruso, M., Gazova, I., Sanchez, A., et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun., 10, 2019, 3215, 10.1038/s41467-019-11053-8.
Kiani Shabestari, S., Morabito, S., Danhash, E.P., McQuade, A., Sanchez, J.R., Miyoshi, E., Chadarevian, J.P., Claes, C., Coburn, M.A., Hasselmann, J., et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer's disease mice. Cell Rep., 39, 2022, 110961, 10.1016/j.celrep.2022.110961.
Konishi, H., Okamoto, T., Hara, Y., Komine, O., Tamada, H., Maeda, M., Osako, F., Kobayashi, M., Nishiyama, A., Kataoka, Y., et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J., 39, 2020, e104464, 10.15252/embj.2020104464.
Hickman, S.E., Kingery, N.D., Ohsumi, T.K., Borowsky, M.L., Wang, L., Means, T.K., El Khoury, J., The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16 (2013), 1896–1905, 10.1038/nn.3554.
Hume, D.A., Perry, V.H., Gordon, S., Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell. Biol. 97 (1983), 253–257, 10.1083/jcb.97.1.253.
Davalos, D., Grutzendler, J., Yang, G., Kim, J.V., Zuo, Y., Jung, S., Littman, D.R., Dustin, M.L., Gan, W.B., ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8 (2005), 752–758, 10.1038/nn1472.
Nimmerjahn, A., Kirchhoff, F., Helmchen, F., Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308 (2005), 1314–1318, 10.1126/science.1110647.
Wang, J., Zhang, K., Xu, L., Wang, E., Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA. 108 (2011), 8257–8262, 10.1073/pnas.1017017108.
Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell, 169, 2017, 10.1016/j.cell.2017.05.018 1276-1290 e1217.
Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O'Loughlin, E., Xu, Y., Fanek, Z., et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 47 (2017), 566–581.e9, 10.1016/j.immuni.2017.08.008.
Sala Frigerio, C., Wolfs, L., Fattorelli, N., Thrupp, N., Voytyuk, I., Schmidt, I., Mancuso, R., Chen, W.T., Woodbury, M.E., Srivastava, G., et al. The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Rep. 27 (2019), 1293–1306.e6, 10.1016/j.celrep.2019.03.099.
Srinivasan, K., Friedman, B.A., Etxeberria, A., Huntley, M.A., van der Brug, M.P., Foreman, O., Paw, J.S., Modrusan, Z., Beach, T.G., Serrano, G.E., Hansen, D.V., Alzheimer's Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Rep., 31, 2020, 107843, 10.1016/j.celrep.2020.107843.
Absinta, M., Maric, D., Gharagozloo, M., Garton, T., Smith, M.D., Jin, J., Fitzgerald, K.C., Song, A., Liu, P., Lin, J.P., et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597 (2021), 709–714, 10.1038/s41586-021-03892-7.
Marschallinger, J., Iram, T., Zardeneta, M., Lee, S.E., Lehallier, B., Haney, M.S., Pluvinage, J.V., Mathur, V., Hahn, O., Morgens, D.W., et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23 (2020), 194–208, 10.1038/s41593-019-0566-1.
De Andrade Costa, A., Chatterjee, J., Cobb, O., Sanapala, S., Scheaffer, S., Guo, X., Dahiya, S., Gutmann, D.H., RNA sequence analysis reveals ITGAL/CD11A as a stromal regulator of murine low-grade glioma growth. Neuro Oncol. 24 (2022), 14–26, 10.1093/neuonc/noab130.
Limone, F., Mordes, D., Couto, A., Pietiläinen, O., Joseph, B.J., Burberry, A., Dia Ghosh, S., Meyer, D., Goldman, M., Bortolin, L., et al. Single-nucleus sequencing reveals enriched expression of genetic risk factors sensitises Motor Neurons to degeneration in ALS. Preprint at bioRxiv, 2021, 10.1101/2021.07.12.452054.
Smajic, S., Prada-Medina, C.A., Landoulsi, Z., Ghelfi, J., Delcambre, S., Dietrich, C., Jarazo, J., Henck, J., Balachandran, S., Pachchek, S., et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145 (2022), 964–978, 10.1093/brain/awab446.
Safaiyan, S., Besson-Girard, S., Kaya, T., Cantuti-Castelvetri, L., Liu, L., Ji, H., Schifferer, M., Gouna, G., Usifo, F., Kannaiyan, N., et al. White matter aging drives microglial diversity. Neuron 109 (2021), 1100–1117.e10, 10.1016/j.neuron.2021.01.027.
Hammond, T.R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A.J., Gergits, F., Segel, M., Nemesh, J., et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50 (2019), 253–271.e6, 10.1016/j.immuni.2018.11.004.
Li, Q., Cheng, Z., Zhou, L., Darmanis, S., Neff, N.F., Okamoto, J., Gulati, G., Bennett, M.L., Sun, L.O., Clarke, L.E., et al. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron 101 (2019), 207–223.e10, 10.1016/j.neuron.2018.12.006.
Kracht, L., Borggrewe, M., Eskandar, S., Brouwer, N., Chuva de Sousa Lopes, S.M., Laman, J.D., Scherjon, S.A., Prins, J.R., Kooistra, S.M., Eggen, B.J.L., Human fetal microglia acquire homeostatic immune-sensing properties early in development. Science 369 (2020), 530–537, 10.1126/science.aba5906.
Marsh, S.E., Walker, A.J., Kamath, T., Dissing-Olesen, L., Hammond, T.R., de Soysa, T.Y., Young, A.M.H., Murphy, S., Abdulraouf, A., Nadaf, N., et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25 (2022), 306–316, 10.1038/s41593-022-01022-8.
Mattei, D., Ivanov, A., van Oostrum, M., Pantelyushin, S., Richetto, J., Mueller, F., Beffinger, M., Schellhammer, L., vom Berg, J., Wollscheid, B., et al. Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations. Int. J. Mol. Sci., 21, 2020, 7944, 10.3390/ijms21217944.
Summers, K.M., Bush, S.J., Hume, D.A., Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol., 18, 2020, e3000859, 10.1371/journal.pbio.3000859.
Gosselin, D., Skola, D., Coufal, N.G., Holtman, I.R., Schlachetzki, J.C.M., Sajti, E., Jaeger, B.N., O'Connor, C., Fitzpatrick, C., Pasillas, M.P., et al. An environment-dependent transcriptional network specifies human microglia identity. Science, 356, 2017, eaal3222, 10.1126/science.aal3222.
Geirsdottir, L., David, E., Keren-Shaul, H., Weiner, A., Bohlen, S.C., Neuber, J., Balic, A., Giladi, A., Sheban, F., Dutertre, C.A., et al. Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell 179 (2019), 1609–1622.e16, 10.1016/j.cell.2019.11.010.
Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., Teichmann, S.A., The technology and biology of single-cell RNA sequencing. Mol. Cell 58 (2015), 610–620, 10.1016/j.molcel.2015.04.005.
Welch, J.D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., Macosko, E.Z., Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 177 (2019), 1873–1887.e17, 10.1016/j.cell.2019.05.006.
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R., Comprehensive Integration of Single-Cell Data. Cell 177 (2019), 1888–1902.e21, 10.1016/j.cell.2019.05.031.
Koussounadis, A., Langdon, S.P., Um, I.H., Harrison, D.J., Smith, V.A., Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep., 5, 2015, 10775, 10.1038/srep10775.
Fernandez-Zapata, C., Leman, J.K.H., Priller, J., Bottcher, C., The use and limitations of single-cell mass cytometry for studying human microglia function. Brain Pathol. 30 (2020), 1178–1191, 10.1111/bpa.12909.
Ajami, B., Samusik, N., Wieghofer, P., Ho, P.P., Crotti, A., Bjornson, Z., Prinz, M., Fantl, W.J., Nolan, G.P., Steinman, L., Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21 (2018), 541–551, 10.1038/s41593-018-0100-x.
Bottcher, C., Schlickeiser, S., Sneeboer, M.A.M., Kunkel, D., Knop, A., Paza, E., Fidzinski, P., Kraus, L., Snijders, G.J.L., Kahn, R.S., et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22 (2019), 78–90, 10.1038/s41593-018-0290-2.
Tay, T.L., Mai, D., Dautzenberg, J., Fernandez-Klett, F., Lin, G., Sagar, Datta, M., Drougard, A., Stempfl, T., Ardura-Fabregat, A., et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20 (2017), 793–803, 10.1038/nn.4547.
McQuade, A., Kang, Y.J., Hasselmann, J., Jairaman, A., Sotelo, A., Coburn, M., Shabestari, S.K., Chadarevian, J.P., Fote, G., Tu, C.H., et al. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer's disease. Nat. Commun., 11, 2020, 5370, 10.1038/s41467-020-19227-5.
Mazaheri, F., Snaidero, N., Kleinberger, G., Madore, C., Daria, A., Werner, G., Krasemann, S., Capell, A., Trumbach, D., Wurst, W., et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 18 (2017), 1186–1198, 10.15252/embr.201743922.
Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18 (2015), 965–977, 10.1038/nn.4030.
Thion, M.S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T., Squarzoni, P., Hoeffel, G., et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 172 (2018), 500–516.e16, 10.1016/j.cell.2017.11.042.
Chatterjee, J., Sanapala, S., Cobb, O., Bewley, A., Goldstein, A.K., Cordell, E., Ge, X., Garbow, J.R., Holtzman, M.J., Gutmann, D.H., Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat. Commun., 12, 2021, 7122, 10.1038/s41467-021-27455-6.
Matcovitch-Natan, O., Winter, D.R., Giladi, A., Vargas Aguilar, S., Spinrad, A., Sarrazin, S., Ben-Yehuda, H., David, E., Zelada Gonzalez, F., Perrin, P., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science, 353, 2016, aad8670, 10.1126/science.aad8670.
Masuda, T., Sankowski, R., Staszewski, O., Bottcher, C., Amann, L., Sagar, Scheiwe, C., Nessler, S., Kunz, P., van Loo, G., et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566 (2019), 388–392, 10.1038/s41586-019-0924-x.
Kana, V., Desland, F.A., Casanova-Acebes, M., Ayata, P., Badimon, A., Nabel, E., Yamamuro, K., Sneeboer, M., Tan, I.L., Flanigan, M.E., et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J. Exp. Med. 216 (2019), 2265–2281, 10.1084/jem.20182037.
Hanamsagar, R., Alter, M.D., Block, C.S., Sullivan, H., Bolton, J.L., Bilbo, S.D., Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65 (2017), 1504–1520, 10.1002/glia.23176.
Guneykaya, D., Ivanov, A., Hernandez, D.P., Haage, V., Wojtas, B., Meyer, N., Maricos, M., Jordan, P., Buonfiglioli, A., Gielniewski, B., et al. Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Rep. 24 (2018), 2773–2783.e6, 10.1016/j.celrep.2018.08.001.
Villa, A., Gelosa, P., Castiglioni, L., Cimino, M., Rizzi, N., Pepe, G., Lolli, F., Marcello, E., Sironi, L., Vegeto, E., Maggi, A., Sex-Specific Features of Microglia from Adult Mice. Cell Rep. 23 (2018), 3501–3511, 10.1016/j.celrep.2018.05.048.
Lynch, M.A., Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Front. Aging Neurosci., 14, 2022, 868448, 10.3389/fnagi.2022.868448.
Halievski, K., Ghazisaeidi, S., Salter, M.W., Sex-Dependent Mechanisms of Chronic Pain: A Focus on Microglia and P2X4R. J. Pharmacol. Exp. Ther. 375 (2020), 202–209, 10.1124/jpet.120.265017.
Han, J., Fan, Y., Zhou, K., Blomgren, K., Harris, R.A., Uncovering sex differences of rodent microglia. J. Neuroinflammation, 18, 2021, 74, 10.1186/s12974-021-02124-z.
De Biase, L.M., Schuebel, K.E., Fusfeld, Z.H., Jair, K., Hawes, I.A., Cimbro, R., Zhang, H.Y., Liu, Q.R., Shen, H., Xi, Z.X., et al. Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron 95 (2017), 341–356.e6, 10.1016/j.neuron.2017.06.020.
Ayata, P., Badimon, A., Strasburger, H.J., Duff, M.K., Montgomery, S.E., Loh, Y.H.E., Ebert, A., Pimenova, A.A., Ramirez, B.R., Chan, A.T., et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21 (2018), 1049–1060, 10.1038/s41593-018-0192-3.
Bennett, F.C., Bennett, M.L., Yaqoob, F., Mulinyawe, S.B., Grant, G.A., Hayden Gephart, M., Plowey, E.D., Barres, B.A., A Combination of Ontogeny and CNS Environment Establishes Microglial Identity. Neuron 98 (2018), 1170–1183.e8, 10.1016/j.neuron.2018.05.014.
Shemer, A., Grozovski, J., Tay, T.L., Tao, J., Volaski, A., SuB, P., Ardura-Fabregat, A., Gross-Vered, M., Kim, J.S., David, E., et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun., 9, 2018, 5206, 10.1038/s41467-018-07548-5.
Abdel-Haq, R., Schlachetzki, J.C.M., Glass, C.K., Mazmanian, S.K., Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 216 (2019), 41–59, 10.1084/jem.20180794.
Erny, D., Dokalis, N., Mezo, C., Castoldi, A., Mossad, O., Staszewski, O., Frosch, M., Villa, M., Fuchs, V., Mayer, A., et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33 (2021), 2260–2276.e7, 10.1016/j.cmet.2021.10.010.
Dantzer, R., Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29 (2009), 247–264, 10.1016/j.iac.2009.02.002.
Shemer, A., Scheyltjens, I., Frumer, G.R., Kim, J.S., Grozovski, J., Ayanaw, S., Dassa, B., Van Hove, H., Chappell-Maor, L., Boura-Halfon, S., et al. Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity 53 (2020), 1033–1049.e7, 10.1016/j.immuni.2020.09.018.
Sousa, C., Golebiewska, A., Poovathingal, S.K., Kaoma, T., Pires-Afonso, Y., Martina, S., Coowar, D., Azuaje, F., Skupin, A., Balling, R., et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep., 19, 2018, e46171, 10.15252/embr.201846171.
Cunningham, C., Wilcockson, D.C., Campion, S., Lunnon, K., Perry, V.H., Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25 (2005), 9275–9284, 10.1523/JNEUROSCI.2614-05.2005.
Louveau, A., Harris, T.H., Kipnis, J., Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 36 (2015), 569–577, 10.1016/j.it.2015.08.006.
Pasciuto, E., Burton, O.T., Roca, C.P., Lagou, V., Rajan, W.D., Theys, T., Mancuso, R., Tito, R.Y., Kouser, L., Callaerts-Vegh, Z., et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell 182 (2020), 625–640.e24, 10.1016/j.cell.2020.06.026.
Dong, Y., Yong, V.W., When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 15 (2019), 704–717, 10.1038/s41582-019-0253-6.
Beers, D.R., Henkel, J.S., Zhao, W., Wang, J., Appel, S.H., CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl. Acad. Sci. USA. 105 (2008), 15558–15563, 10.1073/pnas.0807419105.
Mittal, K., Eremenko, E., Berner, O., Elyahu, Y., Strominger, I., Apelblat, D., Nemirovsky, A., Spiegel, I., Monsonego, A., CD4 T Cells Induce A Subset of MHCII-Expressing Microglia that Attenuates Alzheimer Pathology. iScience 16 (2019), 298–311, 10.1016/j.isci.2019.05.039.
Di Liberto, G., Pantelyushin, S., Kreutzfeldt, M., Page, N., Musardo, S., Coras, R., Steinbach, K., Vincenti, I., Klimek, B., Lingner, T., et al. Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell 175 (2018), 458–471.e19, 10.1016/j.cell.2018.07.049.
Chen, Y., Colonna, M., Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice?. J. Exp. Med., 218, 2021, e20202717, 10.1084/jem.20202717.
Avignone, E., Ulmann, L., Levavasseur, F., Rassendren, F., Audinat, E., Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J. Neurosci. 28 (2008), 9133–9144, 10.1523/JNEUROSCI.1820-08.2008.
Zrzavy, T., Hametner, S., Wimmer, I., Butovsky, O., Weiner, H.L., Lassmann, H., Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. Brain 140 (2017), 1900–1913, 10.1093/brain/awx113.
Gerrits, E., Brouwer, N., Kooistra, S.M., Woodbury, M.E., Vermeiren, Y., Lambourne, M., Mulder, J., Kummer, M., Moller, T., Biber, K., et al. Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer's disease. Acta Neuropathol. 141 (2021), 681–696, 10.1007/s00401-021-02263-w.
Silvin, A., Uderhardt, S., Piot, C., Da Mesquita, S., Yang, K., Geirsdottir, L., Mulder, K., Eyal, D., Liu, Z., Bridlance, C., et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55 (2022), 1448–1465.e6, 10.1016/j.immuni.2022.07.004.
Zhou, Y., Song, W.M., Andhey, P.S., Swain, A., Levy, T., Miller, K.R., Poliani, P.L., Cominelli, M., Grover, S., Gilfillan, S., et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat. Med. 26 (2020), 131–142, 10.1038/s41591-019-0695-9.
Ulland, T.K., Song, W.M., Huang, S.C.C., Ulrich, J.D., Sergushichev, A., Beatty, W.L., Loboda, A.A., Zhou, Y., Cairns, N.J., Kambal, A., et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell 170 (2017), 649–663.e13, 10.1016/j.cell.2017.07.023.
Xiang, X., Wind, K., Wiedemann, T., Blume, T., Shi, Y., Briel, N., Beyer, L., Biechele, G., Eckenweber, F., Zatcepin, A., et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med., 13, 2021, eabe5640, 10.1126/scitranslmed.abe5640.
Ma, S., Zhang, B., LaFave, L.M., Earl, A.S., Chiang, Z., Hu, Y., Ding, J., Brack, A., Kartha, V.K., Tay, T., et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 183 (2020), 1103–1116.e20, 10.1016/j.cell.2020.09.056.
van Galen, P., Viny, A.D., Ram, O., Ryan, R.J., Cotton, M.J., Donohue, L., Sievers, C., Drier, Y., Liau, B.B., Gillespie, S.M., et al. A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes. Mol. Cell 61 (2016), 170–180, 10.1016/j.molcel.2015.11.003.
Bartosovic, M., Kabbe, M., Castelo-Branco, G., Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39 (2021), 825–835, 10.1038/s41587-021-00869-9.
Schaafsma, W., Zhang, X., van Zomeren, K., Jacobs, S., Georgieva, P., Wolf, S., Kettenmann, H., Janova, H., Saiepour, N., Hanisch, U.K., et al. Long-lasting pro-inflammatory suppression of microglia by LPS-preconditioning is mediated by RelB-dependent epigenetic silencing. Brain Behav. Immun. 48 (2015), 205–221, 10.1016/j.bbi.2015.03.013.
Wendeln, A.C., Degenhardt, K., Kaurani, L., Gertig, M., Ulas, T., Jain, G., Wagner, J., Hasler, L.M., Wild, K., Skodras, A., et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556 (2018), 332–338, 10.1038/s41586-018-0023-4.
Chiu, I., Morimoto, E., Goodarzi, H., Liao, J., O'Keeffe, S., Phatnani, H., Muratet, M., Carroll, M., Levy, S., Tavazoie, S., et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 4 (2013), 385–401, 10.1016/j.celrep.2013.06.018.
Sobue, A., Komine, O., Hara, Y., Endo, F., Mizoguchi, H., Watanabe, S., Murayama, S., Saito, T., Saido, T.C., Sahara, N., et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathol. Commun., 9, 2021, 1, 10.1186/s40478-020-01099-x.
Jordao, M.J.C., Sankowski, R., Brendecke, S.M., Sagar, Locatelli, G., Tai, Y.H., Tay, T.L., Schramm, E., Armbruster, S., Hagemeyer, N., et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 363, 2019, eaat7554, 10.1126/science.aat7554.
Olah, M., Menon, V., Habib, N., Taga, M.F., Ma, Y., Yung, C.J., Cimpean, M., Khairallah, A., Coronas-Samano, G., Sankowski, R., et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nat. Commun., 11, 2020, 6129, 10.1038/s41467-020-19737-2.
Kurtz, A., Seltmann, S., Bairoch, A., Bittner, M.S., Bruce, K., Capes-Davis, A., Clarke, L., Crook, J.M., Daheron, L., Dewender, J., et al. A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells. Stem Cell Rep. 10 (2018), 1–6, 10.1016/j.stemcr.2017.12.002.
Luecken, M.D., Theis, F.J., Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol., 15, 2019, e8746, 10.15252/msb.20188746.
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 (2009), 611–622, 10.1373/clinchem.2008.112797.
dMIQE Group Huggett, J.F., The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin. Chem. 66 (2020), 1012–1029, 10.1093/clinchem/hvaa125.
Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., Weissman, J.S., The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7 (2012), 1534–1550, 10.1038/nprot.2012.086.
Mayor-Ruiz, C., Dominguez, O., Fernandez-Capetillo, O., Trap(Seq): An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells. J. Mol. Biol. 429 (2017), 2780–2789, 10.1016/j.jmb.2017.07.020.
Rautenstrauch, P., Vlot, A.H.C., Saran, S., Ohler, U., Intricacies of single-cell multi-omics data integration. Trends Genet. 38 (2022), 128–139, 10.1016/j.tig.2021.08.012.
Reel, P.S., Reel, S., Pearson, E., Trucco, E., Jefferson, E., Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49, 2021, 107739, 10.1016/j.biotechadv.2021.107739.
Kunkle, B.W., Schmidt, M., Klein, H.U., Naj, A.C., Hamilton-Nelson, K.L., Larson, E.B., Evans, D.A., De Jager, P.L., Crane, P.K., Buxbaum, J.D., et al. Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel: A Meta-analysis. JAMA Neurol. 78 (2021), 102–113, 10.1001/jamaneurol.2020.3536.
Río-Hortega, P.d.R., Histogenesis and normal evolution: exodus and regional distribution of microglia. Mem. R. Soc. Esp. Hist. Nat. 11 (1921), 213–268.
Sierra, A., de Castro, F., del Rio-Hortega, J., Rafael Iglesias-Rozas, J., Garrosa, M., Kettenmann, H., The “Big-Bang” for modern glial biology: Translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64 (2016), 1801–1840, 10.1002/glia.23046.
Streit, W.J., Graeber, M.B., Kreutzberg, G.W., Functional plasticity of microglia: a review. Glia 1 (1988), 301–307, 10.1002/glia.440010502.
Acarin, L., Vela, J.M., Gonzalez, B., Castellano, B., Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J. Histochem. Cytochem. 42 (1994), 1033–1041, 10.1177/42.8.8027523.
Castellano, B., Gonzalez, B., Jensen, M.B., Pedersen, E.B., Finsen, B.R., Zimmer, J., A double staining technique for simultaneous demonstration of astrocytes and microglia in brain sections and astroglial cell cultures. J. Histochem. Cytochem. 39 (1991), 561–568, 10.1177/39.5.1707903.
Kitamura, T., Miyake, T., Fujita, S., Genesis of resting microglia in the gray matter of mouse hippocampus. J. Comp. Neurol. 226 (1984), 421–433, 10.1002/cne.902260310.
Tremblay, M.E., Lecours, C., Samson, L., Sanchez-Zafra, V., Sierra, A., From the Cajal alumni Achucarro and Rio-Hortega to the rediscovery of never-resting microglia. Front. Neuroanat., 9, 2015, 45, 10.3389/fnana.2015.00045.
Tremblay, M.E., The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol. 7 (2011), 67–76, 10.1017/S1740925X12000038.
Hanisch, U.K., Kettenmann, H., Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10 (2007), 1387–1394, 10.1038/nn1997.
Tremblay, M.E., Madore, C., Bordeleau, M., Tian, L., Verkhratsky, A., Neuropathobiology of COVID-19: The Role for Glia. Front. Cell. Neurosci., 14, 2020, 592214, 10.3389/fncel.2020.592214.
Sierra, A., Tremblay, M.E., Wake, H., Never-resting microglia: physiological roles in the healthy brain and pathological implications. Front. Cell. Neurosci., 8, 2014, 240, 10.3389/fncel.2014.00240.
Michelucci, A., Heurtaux, T., Grandbarbe, L., Morga, E., Heuschling, P., Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J. Neuroimmunol. 210 (2009), 3–12, 10.1016/j.jneuroim.2009.02.003.
Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., Hill, A.M., M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164 (2000), 6166–6173, 10.4049/jimmunol.164.12.6166.
Butovsky, O., Jedrychowski, M.P., Moore, C.S., Cialic, R., Lanser, A.J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P.M., Doykan, C.E., et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17 (2014), 131–143, 10.1038/nn.3599.
Martinez, F.O., Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep., 6, 2014, 13, 10.12703/P6-13.
Ransohoff, R.M., A polarizing question: do M1 and M2 microglia exist?. Nat. Neurosci. 19 (2016), 987–991, 10.1038/nn.4338.
Devanney, N.A., Stewart, A.N., Gensel, J.C., Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp. Neurol., 329, 2020, 113310, 10.1016/j.expneurol.2020.113310.
Madry, C., Kyrargyri, V., Arancibia-Carcamo, I.L., Jolivet, R., Kohsaka, S., Bryan, R.M., Attwell, D., Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron 97 (2018), 299–312.e6, 10.1016/j.neuron.2017.12.002.
VanRyzin, J.W., Marquardt, A.E., Argue, K.J., Vecchiarelli, H.A., Ashton, S.E., Arambula, S.E., Hill, M.N., McCarthy, M.M., Microglial Phagocytosis of Newborn Cells Is Induced by Endocannabinoids and Sculpts Sex Differences in Juvenile Rat Social Play. Neuron 102 (2019), 435–449.e6, 10.1016/j.neuron.2019.02.006.
Abiega, O., Beccari, S., Diaz-Aparicio, I., Nadjar, A., Laye, S., Leyrolle, Q., Gomez-Nicola, D., Domercq, M., Perez-Samartin, A., Sanchez-Zafra, V., et al. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol., 14, 2016, e1002466, 10.1371/journal.pbio.1002466.
Torres-Platas, S.G., Cruceanu, C., Chen, G.G., Turecki, G., Mechawar, N., Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 42 (2014), 50–59, 10.1016/j.bbi.2014.05.007.
Bachstetter, A.D., Ighodaro, E.T., Hassoun, Y., Aldeiri, D., Neltner, J.H., Patel, E., Abner, E.L., Nelson, P.T., Rod-shaped microglia morphology is associated with aging in 2 human autopsy series. Neurobiol. Aging 52 (2017), 98–105, 10.1016/j.neurobiolaging.2016.12.028.
Streit, W.J., Sammons, N.W., Kuhns, A.J., Sparks, D.L., Dystrophic microglia in the aging human brain. Glia 45 (2004), 208–212, 10.1002/glia.10319.
Tischer, J., Krueger, M., Mueller, W., Staszewski, O., Prinz, M., Streit, W.J., Bechmann, I., Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer's disease. Glia 64 (2016), 1562–1572, 10.1002/glia.23024.
Savage, J.C., Carrier, M., Tremblay, M.E., Morphology of Microglia Across Contexts of Health and Disease. Methods Mol. Biol. 2034 (2019), 13–26, 10.1007/978-1-4939-9658-2_2.
Salamanca, L., Mechawar, N., Murai, K.K., Balling, R., Bouvier, D.S., Skupin, A., MIC-MAC: An automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia 67 (2019), 1496–1509, 10.1002/glia.23623.
St-Pierre, M.K., Carrier, M., Gonzalez Ibanez, F., Simoncicova, E., Wallman, M.J., Vallieres, L., Parent, M., Tremblay, M.E., Ultrastructural characterization of dark microglia during aging in a mouse model of Alzheimer's disease pathology and in human post-mortem brain samples. J Neuroinflammation, 19, 2022, 235, 10.1186/s12974-022-02595-8 (2022).
Colombo, G., Cubero, R.J.A., Kanari, L., Venturino, A., Schulz, R., Scolamiero, M., Agerberg, J., Mathys, H., Tsai, L.H., Chacholski, W., et al. Microglial MorphOMICs unravel region- and sex-dependent morphological phenotypes from postnatal development to degeneration. Preprint at bioRxiv, 2021, 10.1101/2021.11.30.470610.
Graeber, M.B., Changing face of microglia. Science 330 (2010), 783–788, 10.1126/science.1190929.
Lawson, L.J., Perry, V.H., Dri, P., Gordon, S., Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39 (1990), 151–170, 10.1016/0306-4522(90)90229-w.
Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonov, S., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13 (2012), 1118–1128, 10.1038/ni.2419.
Waddell, L.A., Lefevre, L., Bush, S.J., Raper, A., Young, R., Lisowski, Z.M., McCulloch, M.E.B., Muriuki, C., Sauter, K.A., Clark, E.L., et al. ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages. Front. Immunol., 9, 2018, 2246, 10.3389/fimmu.2018.02246.
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., Littman, D.R., Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20 (2000), 4106–4114, 10.1128/mcb.20.11.4106-4114.2000.
Wolf, Y., Yona, S., Kim, K.W., Jung, S., Microglia, seen from the CX3CR1 angle. Front. Cell. Neurosci., 7, 2013, 26, 10.3389/fncel.2013.00026.
Bisht, K., Sharma, K.P., Lecours, C., Gabriela Sanchez, M., El Hajj, H., Milior, G., Olmos-Alonso, A., Gomez-Nicola, D., Luheshi, G., Vallieres, L., et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia 64 (2016), 826–839, 10.1002/glia.22966.
Imai, Y., Ibata, I., Ito, D., Ohsawa, K., Kohsaka, S., A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun. 224 (1996), 855–862, 10.1006/bbrc.1996.1112.
Ito, D., Imai, Y., Ohsawa, K., Nakajima, K., Fukuuchi, Y., Kohsaka, S., Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57 (1998), 1–9, 10.1016/s0169-328x(98)00040-0.
Shapiro, L.A., Perez, Z.D., Foresti, M.L., Arisi, G.M., Ribak, C.E., Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res. 1266 (2009), 29–36, 10.1016/j.brainres.2009.02.031.
Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S., Nabekura, J., Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29 (2009), 3974–3980, 10.1523/JNEUROSCI.4363-08.2009.
Tremblay, M.E., Lowery, R.L., Majewska, A.K., Microglial interactions with synapses are modulated by visual experience. PLoS Biol., 8, 2010, e1000527, 10.1371/journal.pbio.1000527.
Lier, J., Winter, K., Bleher, J., Grammig, J., Mueller, W.C., Streit, W., Bechmann, I., Loss of IBA1-Expression in brains from individuals with obesity and hepatic dysfunction. Brain Res. 1710 (2019), 220–229, 10.1016/j.brainres.2019.01.006.
Fourgeaud, L., Traves, P.G., Tufail, Y., Leal-Bailey, H., Lew, E.D., Burrola, P.G., Callaway, P., Zagorska, A., Rothlin, C.V., Nimmerjahn, A., Lemke, G., TAM receptors regulate multiple features of microglial physiology. Nature 532 (2016), 240–244, 10.1038/nature17630.
Savage, J.C., Jay, T., Goduni, E., Quigley, C., Mariani, M.M., Malm, T., Ransohoff, R.M., Lamb, B.T., Landreth, G.E., Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. J. Neurosci. 35 (2015), 6532–6543, 10.1523/JNEUROSCI.4586-14.2015.
Healy, L.M., Perron, G., Won, S.Y., Michell-Robinson, M.A., Rezk, A., Ludwin, S.K., Moore, C.S., Hall, J.A., Bar-Or, A., Antel, J.P., MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. J. Immunol. 196 (2016), 3375–3384, 10.4049/jimmunol.1502562.
Huang, Y., Happonen, K.E., Burrola, P.G., O'Connor, C., Hah, N., Huang, L., Nimmerjahn, A., Lemke, G., Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol. 22 (2021), 586–594, 10.1038/s41590-021-00913-5.
Robinson, A.P., White, T.M., Mason, D.W., Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57 (1986), 239–247.
Milligan, C.E., Cunningham, T.J., Levitt, P., Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J. Comp. Neurol. 314 (1991), 125–135, 10.1002/cne.903140112.
McKay, S.M., Brooks, D.J., Hu, P., McLachlan, E.M., Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection. J. Neuropathol. Exp. Neurol. 66 (2007), 698–710, 10.1097/nen.0b013e3181256b32.
Blackbeard, J., O'Dea, K., Wallace, V., Segerdahl, A., Pheby, T., Takata, M., Field, M., Rice, A., Quantification of the rat spinal microglial response to peripheral nerve injury as revealed by immunohistochemical image analysis and flow cytometry. J. Neurosci. Methods 164 (2007), 207–217, 10.1016/j.jneumeth.2007.04.013.
Marshall, S.A., McClain, J.A., Kelso, M.L., Hopkins, D.M., Pauly, J.R., Nixon, K., Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol. Dis. 54 (2013), 239–251, 10.1016/j.nbd.2012.12.016.
Peng, J., Liu, Y., Umpierre, A.D., Xie, M., Tian, D.S., Richardson, J.R., Wu, L.J., Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol. Brain, 12, 2019, 71, 10.1186/s13041-019-0492-x.
Haynes, S.E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M.E., Gan, W.B., Julius, D., The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9 (2006), 1512–1519, 10.1038/nn1805.
Sipe, G.O., Lowery, R.L., Tremblay, M.E., Kelly, E.A., Lamantia, C.E., Majewska, A.K., Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun., 7, 2016, 10905, 10.1038/ncomms10905.
Kanamoto, T., Mizuhashi, K., Terada, K., Minami, T., Yoshikawa, H., Furukawa, T., Isolation and characterization of a novel plasma membrane protein, osteoblast induction factor (obif), associated with osteoblast differentiation. BMC Dev. Biol., 9, 2009, 70, 10.1186/1471-213X-9-70.
Bennett, M.L., Bennett, F.C., Liddelow, S.A., Ajami, B., Zamanian, J.L., Fernhoff, N.B., Mulinyawe, S.B., Bohlen, C.J., Adil, A., Tucker, A., et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA. 113 (2016), E1738–E1746, 10.1073/pnas.1525528113.
Satoh, J.i., Kino, Y., Asahina, N., Takitani, M., Miyoshi, J., Ishida, T., Saito, Y., TMEM119 marks a subset of microglia in the human brain. Neuropathology 36 (2016), 39–49, 10.1111/neup.12235.
van Wageningen, T.A., Vlaar, E., Kooij, G., Jongenelen, C.A.M., Geurts, J.J.G., van Dam, A.M., Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol. Commun., 7, 2019, 206, 10.1186/s40478-019-0850-z.
Gonzalez Ibanez, F., Picard, K., Bordeleau, M., Sharma, K., Bisht, K., Tremblay, M.E., Immunofluorescence Staining Using IBA1 and TMEM119 for Microglial Density, Morphology and Peripheral Myeloid Cell Infiltration Analysis in Mouse Brain. J. Vis. Exp., 2019, 10.3791/60510.
Chertoff, M., Shrivastava, K., Gonzalez, B., Acarin, L., Gimenez-Llort, L., Differential modulation of TREM2 protein during postnatal brain development in mice. PLoS One, 8, 2013, e72083, 10.1371/journal.pone.0072083.
Fahrenhold, M., Rakic, S., Classey, J., Brayne, C., Ince, P.G., Nicoll, J.A.R., Boche, D., TREM2 expression in the human brain: a marker of monocyte recruitment?. Brain Pathol. 28 (2018), 595–602, 10.1111/bpa.12564.
Rogers, J.T., Morganti, J.M., Bachstetter, A.D., Hudson, C.E., Peters, M.M., Grimmig, B.A., Weeber, E.J., Bickford, P.C., Gemma, C., CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31 (2011), 16241–16250, 10.1523/JNEUROSCI.3667-11.2011.
Paolicelli, R.C., Bisht, K., Tremblay, M.E., Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front. Cell. Neurosci., 8, 2014, 129, 10.3389/fncel.2014.00129.
Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S., Kohsaka, S., Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J. Neurosci. Res. 81 (2005), 357–362, 10.1002/jnr.20480.
Sasmono, R.T., Oceandy, D., Pollard, J.W., Tong, W., Pavli, P., Wainwright, B.J., Ostrowski, M.C., Himes, S.R., Hume, D.A., A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101 (2003), 1155–1163, 10.1182/blood-2002-02-0569.