[en] Mobile robots and multimobile robotic system usage for task achievement have been an emerging research area since the last decades. This article presents a review about mobile robot navigation problem and multimobile robotic systems control. The main focus is made on path planning strategies and algorithms in static and dynamic environments. A classification on mobile robots path planning has been defined in the literature and divided to classical and heuristic approaches. Each of them has its own advantages and drawbacks. On the other hand, the control of
multimobile robots is presented and the control approaches for a fleet of robots are presented. Scientists found that using more than one robot as opposed to a single one presents many advantages when considering redundant task, dangerous tasks, or a task that scales up or down in time or that requires flexibility. They have defined three main approaches of multiple robots control: behavior-based approach, leader–follower approach, and virtual structure approach. This article addresses these approaches and provides examples from the literature.
A. Prasad, B. Sharma, J. Vanualailai and S. A. Kumar, A geometric approach to target convergence and obstacle avoidance of a nonstandard tractor-trailer robot, Int. J. Robust. Nonlin. 30 (13), 4924-4943 (2020).
K. Raghuwaiya, B. Sharma and J. Vanualailai, Leader-follower based locally rigid formation control, J. Adv. Transport. 2018 (5), 1-14 (2018).
E. Dönmez, A. F. Kocamaz and M. Dirik, A vision-based real-time mobile robot controller design based on gaussian function for indoor environment, Arab. J. Sci. Eng. 43 (12), 7127-7142 (2018).
E. Tuba, I. Strumberger, D. Zivkovic, N. Bacanin and M. Tuba, Mobile Robot Path PLanning By Improved Brain Storm Optimization Algorithm, In: 2018 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2018) pp. 1-8.
P. Ehlert, The use of artificial intelligence robots, Report on research project (1999).
B. Patle, L. G.Babu, A. Pandey, D. Parhi and A. Jagadeesh, A review: On path planning strategies for navigation of mobile robot, Defence Technol. 15 (4), 582-606 (2019).
M. N. Zafar and J. Mohanta, Methodology for path planning and optimization of mobile robots: A review, Proc. Comput. Sci. 133 (3), 141-152 (2018).
G. Conte and R. Zulli, Hierarchical path planning in a multi-robot environment with a simple navigation function, IEEE Trans. Syst. Man Cybernet. 25 (4), 651-654 (1995).
H. Choset and J. Burdick, Sensor-based exploration: The hierarchical generalized voronoi graph, Int. J. Robot. Res. 19 (2), 96-125 (2000).
O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5 (1), 90-98 (1986).
P. Chen, Y. Hwang and A. Sandros, Motion Planner with Performance Proportional to Task Difficulty, In: IEEE International Conference on Robotics and Automation, France (1992).
D. Janglová, Neural networks in mobile robot motion, Int. J. Adv. Robot. Syst. 1 (1), 2 (2004).
H. J. Bremermann. The Evolution of Intelligence: The Nervous System as A Model of Its Environment (University of Washington, Department of Mathematics, 1958).
R. Eberhart and J. Kennedy, A New Optimiser Using Particle Swarm Theory in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, In: Proc. Sixth International Symposium on Micro Machine and Human Science (1995) pp. 39-43.
B. Hichri, Design and control of collaborative, cross and carry mobile robots: C3Bots. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II (2015).
B. Hichri, J. Fauroux, L. Adouane, I. Doroftei and Y. Mezouar, Design of cooperative mobile robots for co-manipulation and transportation tasks, Robot. Comput.-Intgr. Manuf. 57 (3), 412-421 (2019).
B. Hichri, L. Adouane, J.-C. Fauroux, Y. Mezouar and I. Doroftei, Flexible co-manipulation and transportation with mobile multi-robot system, Assembly Autom. 39 (3), 422-431 (2019).
L. Adouane and L. Fort-Piat, Hybrid Behavioral Control Architecture for the Cooperation of Minimalist Mobile Robots, In: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04 (IEEE, vol. 4, 2004) pp. 3735-3740.
M. Abou-Samah and V. Krovi, Optimal Configuration Selection for A Cooperating System of Mobile Manipulators, In: ASME, 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2002) pp. 1299-1306.
S. Kernbach, E. Meister, F. Schlachter, K. Jebens, M. Szymanski, J. Liedke, D. Laneri, L. Winkler, T. Schmickl, R. Thenius, et al., Symbiotic Robot Organisms: Replicator and Symbrion Projects, In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems (ACM, 2008) pp. 62-69.
T. Arai, E. Pagello and L. E. Parker, Editorial: Advances in multi-robot systems, IEEE Trans. Robotic. Autom. 18 (5), 655-661 (2002).
O. Simonin, A. Liégeois and P. Rongier, An Architecture for Reactive Cooperation of Mobile Distributed Robots, In: Distributed Autonomous Robotic Systems 4 (Springer, 2000) pp. 35-44.
P. Lucidarme, O. Simonin and et al., Implementation and Evaluation of A satisfaction/altruism Based Architecture for Multi-Robot Systems, In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2002., (IEEE, vol. 1, 2002) pp. 1007-1012.
A. D. Sadowska, Formation control of nonholonomic mobile robots: the virtual structure approach. PhD thesis, Queen Mary University of London (2012).
E.-H. Guechi, Suivi de trajectoires d'un robot mobile non holonome: approche par modéle flou de Takagi-Sugeno et prise en compte des retards. PhD thesis, Université de Valenciennes et du Hainaut-Cambresis (2010).
L. Adouane, Architectures de contrôle comportementales et réactives pour la coopération d'un groupe de robots mobiles. PhD thesis, Université de Franche-Comté (2005).
K. Kanjanawanishkul, Formation control of mobile robots: Survey, In: Eng. Ubu. Ac. Th. (2005) pp. 50-64.
K. S. Raghuwaiya, S. Singh and J. Vanualailai, Formation control of mobile robots, Int. J. Mech. Mechatron. Eng. 5 (12), 2697-2702 (2011).
T. H. van den Broek, N. van de Wouw and H. Nijmeijer, Formation Control of Unicycle Mobile Robots: A Virtual Structure Approach, In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009 (IEEE, 2009) pp. 8328-8333.
A. Sadowska, T. van den Broek, H. Huijberts, N. van de Wouw, D. Kostić and H. Nijmeijer, A virtual structure approach to formation control of unicycle mobile robots using mutual coupling, Int. J. Cont. 84 (11), 1886-1902 (2011).
A. Benzerrouk, L. Adouane, L. Lequievre and P. Martinet, Navigation of Multi-Robot Formation in Unstructured Environment Using Dynamical Virtual Structures, In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2010) pp. 5589-5594.
M. A. Dehghani, M. B. Menhaj and H. Ghaderi, A hardware in the loop simulation testbed for vision-based leader-follower formation flight, Mechatronics 47, 223-232 (2017).
B. Das, B. Subudhi and B. B. Pati, Employing nonlinear observer for formation control of AUVs under communication constraints, International Journal of Intelligent Unmanned Systems 3 (2/3), 122-155 (2015).
Z. Peng, Formation Control of Multiple Nonholonomic Wheeled Mobile Robots. PhD thesis, Ecole Centrale de Lille, (2013).
F. Okumuş, E. Dönmez and A. F. Kocamaz, A cloudware architecture for collaboration of multiple agvs in indoor logistics: Case study in fabric manufacturing enterprises, Electronics 9 (12), 2023(2020).
R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza. Introduction to Autonomous Mobile Robots (MIT Press, 2011).
L. Lulu and A. Elnagar, A Comparative Study Between Visibility-Based Roadmap Path PLanning Algorithms, In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005) pp. 3263-3268.
H. M. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun and R. C. Arkin, Principles of Robot Motion: Theory, Algorithms, and Implementation (MIT Press, 2005).
O. Takahashi and R. J. Schilling, Motion planning in a plane using generalized voronoi diagrams, IEEE Trans. Robot. Autom. 5 (2), 143-150 (1989).
C. Ó'Dúnlaing and C. K. Yap, A retraction method for planning the motion of a disc, J. Algor. 6 (1), 104-111 (1985).
H. Noborio, T. Naniwa and S. Arimoto, A quadtree-based path-planning algorithm for a mobile robot, J. Robot. Syst. 7 (4), 555-574 (1990).
M. Šeda, Roadmap Methods vs. Cell Decomposition in Robot Motion Planning, In: Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation (2007) pp. 127-132.
W. Regli, Robot Lab: Robot Path Planning. Lectures Notes of Department of Computer Science (Drexel University, 2007).
M. Barbehenn and S. Hutchinson, Toward an Exact Incremental Geometric Robot Motion PLanner, In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (IEEE, vol. 3, 1995) pp. 39-44.
D. Zhu and J.-C. Latombe, New heuristic algorithms for efficient hierarchical path planning, Tech. Rep., Stanford Univ, CA, Dept of Computer Science, (1989).
F. Lingelbach, Path PLanning Using Probabilistic Cell Decomposition, In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA'04 (IEEE, vol. 1, 2004) pp. 467-472
G. Garibotto and S. Masciangelo, Path Planning Using the Potential Field Approach for Navigation, In: Fifth International Conference on Advanced Robotics' Robots in Unstructured Environments (IEEE, 1991) pp. 1679-1682.
J.-O. Kim and P. Khosla, Real-Time Obstacle Avoidance Using Harmonic Potential Functions (1992).
J. Borenstein and Y. Koren, Real-time obstacle avoidance for fast mobile robots, IEEE Trans. Syst. Man Cybern. 19 (5), 1179-1187 (1989).
S. S. Ge and Y. J. Cui, Dynamic motion planning for mobile robots using potential field method, Auton. Robot. 13 (3), 207-222 (2002).
E. Dönmez and A. F. Kocamaz, Design of mobile robot control infrastructure based on decision trees and adaptive potential area methods, Iran. J. Sci. Technol. Trans. Electric. Eng. 44 (1), 431-448 (2020).
E. W. Dijkstra et al, A note on two problems in connexion with graphs, Numer. Math. 1 (1), 269-271 (1959).
J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT press, 1992).
T. Shibata and T. Fukuda, Intelligent Motion PLanning By Genetic Algorithm with Fuzzy Critic, In: Proceedings of 8th IEEE International Symposium on Intelligent Control (IEEE, 1993) pp. 565-570.
M.-T. Shing and G. B. Parker, Genetic Algorithms for the Development of Real-Time Multi-Heuristic Search Strategies, In: ICGA (Citeseer, 1993) pp. 565-572.
J. Xiao, Z. Michalewicz, L. Zhang and K. Trojanowski, Adaptive evolutionary planner/navigator for mobile robots, IEEE Trans. Evol. Comput. 1 (1), 18-28 (1997).
X. Kang, Y. Yue, D. Li and C. Maple, Genetic algorithm based solution to dead-end problems in robot navigation, Int. J. Comput. Appl. Technol. 41 (3-4), 177-184 (2011).
P. Shi and Y. Cui, Dynamic Path Planning for Mobile Robot Based on Genetic Algorithm in Unknown Environment, In: 2010 Chinese Control and Decision Conference (IEEE, 2010) pp. 4325-4329.
L. A. Zadeh, G. J. Klir and B. Yuan, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers (World Scientific, 1996).
S. Raguraman, D. Tamilselvi and N. Shivakumar, Mobile Robot Navigation Using Fuzzy Logic Controller, In: 2009 International Conference on Control, Automation, Communication and Energy Conservation (IEEE, 2009) pp. 1-5.
H. Omrane, M. S. Masmoudi and M. Masmoudi, Fuzzy logic based control for autonomous mobile robot navigation, Comput. Intel. Neurosci. 2016 (2), 1-10 (2016).
L. Y. Y. Jinglun and S. Yuancheng, The path planning of mobile robot by neural networks and hierarchical reinforcement learning, Front. Neurorobot. 14, 63 (2020).
A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz and N. Pavón, Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach, Soft Comput. 21 (4), 949-964 (2017).
X.-l Tang, L.-m Li and B.-j Jiang, Mobile robot slam method based on multi-agent particle swarm optimized particle filter, J. China Univ. Posts Telecommun. 21 (6), 78-86 (2014).
M. Dorigo and L. M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Trans. Evol. Comput 1 (1), 53-66 (1997).
T. Guan-Zheng, H. Huan and A. Sloman, Ant colony system algorithm for real-time globally optimal path planning of mobile robots, Acta Automat. Sin 33 (3), 279-285 (2007).
K. Zhu and T. Zhang, Deep reinforcement learning based mobile robot navigation: A review, Tsinghua Sci. Technol. 26 (5), 674-691 (2021).
N. Altuntaş, E. Imal, N. Emanet and C. N. ÖztÜrk, Reinforcement learning-based mobile robot navigation, Turkish J. Electric. Eng. Comput. Sci. 24 (3), 1747-1767 (2016).
J. Xin, H. Zhao, D. Liu and M. Li, Application of Deep Reinforcement Learning in Mobile Robot Path PLanning, In: 2017 Chinese Automation Congress (CAC) (2017) pp. 7112-7116.
B. Wang, Z. Liu, Q. Li and A. Prorok, Mobile robot path planning in dynamic environments through globally guided reinforcement learning, IEEE Robot. Automat. Lett. 5 (4), 6932-6939 (2020).
H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj and M. Ardani, Deep reinforcement learning for real autonomous mobile robot navigation in indoor environments, CoRR, vol. abs/2005.13857 (2020).
M. Mitić and Z. Miljković, Bio-inspired approach to learning robot motion trajectories and visual control commands, Exp. Syst. Appl. 42 (5), 2624-2637 (2015).
B. D. Argall, S. Chernova, M. Veloso and B. Browning, A survey of robot learning from demonstration, Robot. Auton. Syst. 57 (5), 469-483 (2009).
M. M. Eusuff and K. E. Lansey, Optimization of water distribution network design using the shuffled frog leaping algorithm, J. Water Res. Plan. Manage. 129 (3), 210-225 (2003).
J. Ni, X. Yin, J. Chen and X. Li, An Improved Shuffled Frog Leaping Algorithm for Robot Path PLanning, In: 2014 10th International Conference on Natural Computation (ICNC) (IEEE, 2014) pp. 545-549.
A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz and N. Pavón, MOSFLA-MRPP: Multi-objective shuffled frog-leaping algorithm applied to mobile robot path planning, Eng. Appl. Artif. Intel. 44 (7), 123-136 (2015).
P. K. Mohanty and D. R. Parhi, Optimal path planning for a mobile robot using cuckoo search algorithm, J. Exp. Theor. Artif. Intell. 28 (1-2), 35-52 (2016).
P. K. Mohanty and D. R. Parhi, A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach, Memet. Comput. 7 (4), 255-273 (2015).
D. Karaboga, An idea based on honey bee swarm for numerical optimization. Tech. Rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005).
M. A. Contreras-Cruz, V. Ayala-Ramirez and U. H. Hernandez-Belmonte, Mobile robot path planning using artificial bee colony and evolutionary programming, Appl. Soft Comput. 30 (1), 319-328 (2015).
M. Saffari and M. Mahjoob, Bee Colony Algorithm for Real-Time Optimal Path PLanning of Mobile Robots, In: 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control (IEEE, 2009) pp. 1-4.
Q. Ma and X. Lei, Dynamic Path PLanning of Mobile Robots Based on ABC Algorithm, In: International conference on artificial intelligence and computational intelligence (Springer, 2010) pp. 267-274.
P. K. Mohanty and D. R. Parhi, A new efficient optimal path planner for mobile robot based on invasive weed optimization algorithm, Front. Mech. Eng. 9 (4), 317-330 (2014).
A. Sengupta, T. Chakraborti, A. Konar and A. Nagar, Energy Efficient Trajectory PLanning By A Robot Arm Using Invasive Weed Optimization Technique, In: 2011 Third World Congress on Nature and Biologically Inspired Computing (IEEE, 2011) pp. 311-316.
M. R. Ghalenoei, H. Hajimirsadeghi and C. Lucas, Discrete Invasive Weed Optimization Algorithm: Application to Cooperative Multiple Task Assignment of Uavs, In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (IEEE, 2009) pp. 1665-1670.
S. Kundu and D. R. Parhi, Navigation of underwater robot based on dynamically adaptive harmony search algorithm, Memet. Comput. 8 (2), 125-146 (2016).
P. Tangpattanakul, A. Meesomboon and P. Artrit, Optimal Trajectory of Robot Manipulator Using Harmony Search Algorithms, In: Recent Advances in Harmony Search Algorithm (Springer, 2010) pp. 23-36.
J. Guo, Y. Gao and G. Cui, The path planning for mobile robot based on bat algorithm, Int. J. Automat. Cont. 9 (1), 50-60 (2015).
S. Ghosh, P. K. Panigrahi and D. R. Parhi, Analysis of FPA and BA meta-heuristic controllers for optimal path planning of mobile robot in cluttered environment, IET Sci. Meas. Technol. 11 (7), 817-828 (2017).
G.-G. Wang, H. E. Chu and S. Mirjalili, Three-dimensional path planning for UCAV using an improved bat algorithm, Aerosp. Sci. Technol. 49, 231-238 (2016).
J. Chakraborty, A. Konar, U. K. Chakraborty and L. C. Jain, Distributed Cooperative Multi-Robot Path PLanning Using Differential Evolution, In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (IEEE, 2008) pp. 718-725.
F. Q. Z. Deyun, Time optimal path planning based on differential evolution algorithm, Comput. Eng. Appl. 12, 021 (2005).
D. R. Parhi and S. Kundu, Navigational control of underwater mobile robot using dynamic differential evolution approach, Proc. Inst. Mech. Eng. M: J. Eng. Marit. Environ. 231 (1), 284-301 (2017).
A. V. Savkin and C. Wang, A simple biologically inspired algorithm for collision-free navigation of a unicycle-like robot in dynamic environments with moving obstacles, Robotica 31 (6), 993-1001 (2013).
H. L. N. N. Thanh, N. N. Phi and S. K. Hong, Simple nonlinear control of quadcopter for collision avoidance based on geometric approach in static environment, Int. J. Adv. Robot. Syst. 15 (2), 1729881418767575 (2018).
H. L. N. N. Thanh and S. K. Hong, Completion of collision avoidance control algorithm for multicopters based on geometrical constraints, IEEE Access 6, 27111-27126 (2018).
R. W. Beard, J. Lawton, Y. F. Hadaegh, et al., A coordination architecture for spacecraft formation control, IEEE Trans. Contr. Syst. Technol. 9 (6), 777-790 (2001).
L. Consolini, F. Morbidi, D. Prattichizzo and M. Tosques, Leader-follower formation control of nonholonomic mobile robots with input constraints, Automatica 44 (5), 1343-1349 (2008).
J. Wu and Z. Jiang, Formation control of multiple mobile robots via switching strategy, Int. J. Inform. Syst. Sci. 5 (6), 210-218 (2009).
J. Vilca, L. Adouane, Y. Mezouar and P. Lebraly, An Overall Control Strategy Based on Target Reaching for the Navigation of an Urban Electric Vehicle, In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2013) pp. 728-734.
T. Balch and R. C. Arkin, Behavior-based formation control for multirobot teams, IEEE Trans. Robot. Automat. 14 (6), 926-939 (1998).
J. Ghommam, H. Mehrjerdi and M. Saad, Robust formation control without velocity measurement of the leader robot, Cont. Eng. Pract. 21 (8), 1143-1156 (2013).
W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control, Robot. Auton. Syst. 56 (4), 324-333 (2008).
L. I. U. S.-C., T. A. N. D.-L. and L. I. U. G.-J., Robust leader-follower formation control of mobile robots based on a second order kinematics model, Acta Automat. Sin. 33 (9), 947-955 (2007).
H. Mehrjerdi, J. Ghommam and M. Saad, Nonlinear coordination control for a group of mobile robots using a virtual structure, Mechatronics 21 (7), 1147-1155 (2011).
T. van den Broek, N. van de Wouw and H. Nijmeijer, A virtual structure approach to formation control of unicycle mobile robots, Eindhoven University of Technology, the Netherlands, Tech. Rep. DCT (2009).
Y. Kambayashi, H. Yajima, T. Shyoji, R. Oikawa and M. Takimoto, Formation control of swarm robots using mobile agents, Vietnam J. Comput. Sci. 6 (02), 193-222 (2019).
B. Kim and P. Tsiotras, Experimental comparison of control laws for unicycle-type mobile robots, SAT 1 (2), 9.
M. Deng, A. Inoue, K. Sekiguchi and L. Jiang, Two-wheeled mobile robot motion control in dynamic environments, Robot Comput.-Intgr. Manuf. 26 (3), 268-272 (2010).
F. Pourboghrat, Exponential stabilization of nonholonomic mobile robots, Comput. Electr. Eng. 28 (5), 349-359 (2002).
Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, A Stable Tracking Control Method for A Non-Holonomic Mobile Robot, In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems', IROS'91.' (IEEE, 1991) pp. 1236-1241.