[en] The number of additive manufacturing methods and materials is growing rapidly, leaving gaps in the knowledge of specific material properties. A relatively recent addition is the metal-filled filament to be printed similarly to the fused filament fabrication (FFF) technology used for plastic materials, but with additional debinding and sintering steps. While tensile, bending, and shear properties of metals manufactured this way have been studied thoroughly, their fatigue properties remain unexplored. Thus, the paper aims to determine the tensile, fatigue, and impact strengths of Markforged 17-4 PH and BASF Ultrafuse 316L stainless steel to answer whether the metal FFF can be used for structural parts safely with the current state of technology. They are compared to two 316L variants manufactured via selective laser melting (SLM) and literature results. For extrusion-based additive manufacturing methods, a significant decrease in tensile and fatigue strength is observed compared to specimens manufactured via SLM. Defects created during the extrusion and by the pathing scheme, causing a rough surface and internal voids to act as local stress risers, handle the strength decrease. The findings cast doubt on whether the metal FFF technique can be safely used for structural components; therefore, further developments are needed to reduce internal material defects.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
KEDZIORA, Slawomir ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
DECKER, Thierry ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
MUSEYIBOV, Elvin ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Morbach, Julian
Hohmann, Steven
Huwer, Adrian
Wahl, Michael
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing
Spencer O.O. Yusuf O.T. Tofade T.C. Additive manufacturing technology development: A trajectory towards Industrial Revolution Am. J. Mech. Ind. Eng. 2018 3 80 90 10.11648/j.ajmie.20180305.12
Munsch M. Schmidt-Lehr M. Wycisk E. Binder Jetting and FDM: A Comparison with Laser Powder Bed Fusion and Metal Injection Moulding Metal Additive Manufacturing Inovar Communications Ltd. Shrewsbury, UK 2018 Volume 4 159
Galati M. Minetola P. Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts Materials 2019 12 4122 10.3390/ma12244122 31835380
Suwanpreecha C. Manonukul A. A review on material extrusion additive manufacturing of metal and how it compares with metal injection moulding Metals 2022 12 429 10.3390/met12030429
Kan X. Yang D. Zhao Z. Sun J. 316L FFF binder development and debinding optimization Mater. Res. Express 2021 8 116515 10.1088/2053-1591/ac3b15
Desktop Metal Inc. BMD Design Guide Desktop Metal, Inc. Cambridge, MA, USA 2022
Kurose T. Abe Y. Santos M.V. Kanaya Y. Ishigami A. Tanaka S. Ito H. Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals Materials 2020 13 2493 10.3390/ma13112493 32486111
Alkindi T. Alyammahi M. Susantyoko R.A. Atatreh S. The effect of varying specimens’ printing angles to the bed surface on the tensile strength of 3D-printed 17-4PH stainless-steels via metal FFF additive manufacturing MRS Commun. 2021 11 310 316 10.1557/s43579-021-00040-0
Bjørheim F. Lopez I.L.T. Tension testing of additively manufactured specimens of 17-4 PH processed by Bound Metal Deposition IOP Conf. Ser. Mater. Sci. Eng. 2021 1201 012037 10.1088/1757-899X/1201/1/012037
GmbH B.D.P.S. User Guidelines for 3D Printing Metal Parts Available online: https://forward-am.com/material-portfolio/ultrafuse-filaments-for-fused-filaments-fabrication-fff/metal-filaments/ultrafuse-316l/ (accessed on 28 July 2022)
Poprawe R. Hinke C. Meiners W. Schrage J. Bremen S. Merkt S. SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design Advances in Production Technology Springer International Publishing AG Cham, Switzerland 2015 49 65
Yadroitsev I. Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape Phys. Procedia 2010 5 Pt B 551 560 10.1016/j.phpro.2010.08.083
Kokkonen P. Salonen L. Virta J. Hemming B. Laukkanen P. Savolainen M. Komi E. Junttila J. Ruusuvuori K. Varjus S. Design Guide for Additive Manufacturing of Metal Components by SLM Process VTT Technical Research Centre of Finland Espoo, Finland 2016 131
Abe Y. Kurose T. Santos M.V. Kanaya Y. Ishigami A. Tanaka S. Ito H. Effect of layer directions on internal structures and tensile properties of 17-4PH stainless steel parts fabricated by fused deposition of metals Materials 2021 14 243 10.3390/ma14020243
Messimer S.L. Rocha Pereira T. Patterson A.E. Lubna M. Drozda F.O. Full-density fused deposition modeling dimensional error as a function of raster angle and build orientation: Large dataset for eleven materials J. Manuf. Mater. Process. 2019 3 6 10.3390/jmmp3010006
Renishaw SS 316L-0407 Powder for Additive Manufacturing Available online: https://www.renishaw.com/resourcecentre/en/details/Data%20sheet:%20SS%20316L-0407%20powder%20for%20additive%20manufacturing(75792)?lang=en (accessed on 10 May 2022)
BASF Technical Data Sheet for Ultrafuse 316L Available online: https://www.ultrafusefff.com/wp-content/uploads/2019/07/Ultrafuse_316L_Technical_Data_Sheet_TDS.pdf (accessed on 30 May 2022)
Markforged 17-4 PH Stainless Steel Available online: https://static.markforged.com/downloads/17-4-ph-stainless-steel.pdf (accessed on 10 May 2022)
DIN EN ISO 6892 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature DIN Berlin, Germany 2020
ISO 1099:2017 Metallic Materials—Fatigue Testing—Axial Force—Controlled Method International Organization for Standardization Geneva, Switzerland 2017
ISO 6506-1 Metallic Materials—Brinell Hardness Test—Part 1: Test Method. In Part 1: Test Method International Organization for Standardization Geneva, Switzerland 2014
ISO 148-1:2016 Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method 3rd ed. International Organization for Standardization Geneva, Switzerland 2016 29
EOS EOS Stainless Steel 316L Material Data Sheet Available online: https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/stainlesssteel/material_datasheet_eos_stainlesssteel_316l_en_web.pdf (accessed on 10 May 2022)
Chao Q. Thomas S. Birbilis N. Cizek P. Hodgson P.D. Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel Mater. Sci. Eng. 2021 821 141611 10.1016/j.msea.2021.141611
Milella P.P. Fatigue and Corrosion in Metals Springer Science & Business Media Berlin/Heidelberg, Germany 2013 10.1007/978-88-470-2336-9
Jiang D. Ning F. Additive manufacturing of 316L stainless steel by a printing-debinding-sintering method: Effects of microstructure on fatigue property J. Manuf. Sci. Eng. 2021 143 091007 10.1115/1.4050190
Tosto C. Tirillò J. Sarasini F. Cicala G. Hybrid metal/polymer filaments for Fused Filament Fabrication (FFF) to print metal parts Appl. Sci. 2021 11 1444 10.3390/app11041444
Gong H. Snelling D. Kardel K. Carrano A. Comparison of stainless steel 316L parts made by FDM-and SLM-based additive manufacturing processes JOM 2018 71 880 885 10.1007/s11837-018-3207-3
ASTM International ASTM B883-19 Standard Specification for Metal Injection Molded (MIM) Materials ASTM International Geneva, Switzerland 2019 Volume ASTM B883-19
Zhang Y. Feng E. Mo W. Lv Y. Ma R. Ye S. Wang X. Yu P. On the Microstructures and Fatigue Behaviors of 316L Stainless Steel Metal Injection Molded with Gas- and Water-Atomized Powders Metals 2018 8 893 10.3390/met8110893
Heaney D.F. Handbook of Metal Injection Molding Woodhead Publishing Sawston, UK 2018
Lavery N. Cherry J. Mehmood S. Davies H. Girling B. Sackett E. Brown S. Sienz J. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion Mater. Sci. Eng. A 2017 693 186 213 10.1016/j.msea.2017.03.100
Montero Sistiaga M. Nardone S. Hautfenne C. Van Humbeeck J. Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM) Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference Austin, TX, USA 8–10 July 2016 558 565
Suryawanshi J. Prashanth K.G. Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel Mater. Sci. Eng. 2017 696 113 121 10.1016/j.msea.2017.04.058
Eshkabilov S. Ara I. Sevostianov I. Azarmi F. Tangpong X. Mechanical and thermal properties of stainless steel parts, manufactured by various technologies, in relation to their microstructure Int. J. Eng. Sci. 2021 159 103398 10.1016/j.ijengsci.2020.103398
Mahmoudi M. Elwany A. Yadollahi A. Thompson S.M. Bian L. Shamsaei N. Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel Rapid Prototyp. J. 2017 23 280 294 10.1108/RPJ-12-2015-0192
Wang F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology Int. J. Adv. Manuf. Technol. 2012 58 545 551 10.1007/s00170-011-3423-2
Watson A. Belding J. Ellis B.D. Characterization of 17-4 PH Processed via Bound Metal Deposition (BMD) Proceedings of TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings Springer Cham, Switzerland 2020 205 216
Henry T.C. Morales M.A. Cole D.P. Shumeyko C.M. Riddick J.C. Mechanical behavior of 17-4 PH stainless steel processed by atomic diffusion additive manufacturing Int. J. Adv. Manuf. Technol. 2021 114 2103 2114 10.1007/s00170-021-06785-1
Suwanpreecha C. Seensattayawong P. Vadhanakovint V. Manonukul A. Influence of specimen layout on 17-4PH (AISI 630) alloys fabricated by low-cost additive manufacturing Metall. Mater. Trans. 2021 52 1999 2009 10.1007/s11661-021-06211-x
Harmer S. ASM Handbook Vol. 7 ‘Powder Metal Technologies and Applications’ ASM International Almere, The Netherlands 2000 Volume 43 22
Jui-Hung W. Chih-Kuang L. Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures Metall. Mater. Trans. 2002 33 1715 1724 10.1007/s11661-002-0180-8
Nezhadfar P.D. Shrestha R. Phan N. Shamsaei N. Fatigue behavior of additively manufactured 17-4 PH stainless steel: Synergistic effects of surface roughness and heat treatment Int. J. Fatigue 2019 124 188 204 10.1016/j.ijfatigue.2019.02.039
Luecke W.E. Slotwinski J.A. Mechanical properties of austenitic stainless steel made by additive manufacturing J. Res. Natl. Inst. Stand. Technol. 2014 119 398 418 10.6028/jres.119.015
Desktop Metal I. 17-4 PH Stainless Steel Available online: www.desktopmetal.com (accessed on 15 May 2022)
Werner T. Madia M. Zerbst U. Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L Procedia Struct. Integr. 2022 38 554 563 10.1016/j.prostr.2022.03.056
Celik A. Arslan Y. Yetim A.F. Efeoglu I. Fatigue behaviour of duplex treated AISI 316L stainless steel Metall. Mater. 2007 45 35 40
Strizak J. Tian H. Liaw P. Mansur L. Fatigue properties of type 316LN stainless steel in air and mercury J. Nucl. Mater. 2005 343 134 144 10.1016/j.jnucmat.2005.03.019
Yadollahi A. Shamsaei N. Thompson S.M. Elwany A. Bian L. Mahmoudi M. Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel Proceedings of the 2015 International Solid Freeform Fabrication Symposium Houston, TX, USA 13–19 November 2015
Molaei R. Fatemi A. Phan N. Multiaxial fatigue of LB-PBF additive manufactured 17–4 PH stainless steel including the effects of surface roughness and HIP treatment and comparisons with the wrought alloy Int. J. Fatigue 2020 137 105646 10.1016/j.ijfatigue.2020.105646
Concli F. Fraccaroli L. Nalli F. Cortese L. High and low-cycle-fatigue properties of 17–4 PH manufactured via selective laser melting in as-built, machined and hipped conditions Prog. Addit. Manuf. 2021 7 99 109 10.1007/s40964-021-00217-y
Al-Maharma A.Y. Patil S.P. Markert B. Effects of porosity on the mechanical properties of additively manufactured components: A critical review Mater. Res. Express 2020 7 122001 10.1088/2053-1591/abcc5d