Article (Périodiques scientifiques)
Finite strain poro-hyperelasticity: an asymptotic multi-scale ALE-FSI approach supported by ANNs
DEHGHANI, Hamidreza; ZILIAN, Andreas
2023In Computational Mechanics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s00466-022-02262-y.pdf
Postprint Éditeur (4.85 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Finite strain porohyperelasticity; Arbitrary Lagrangian–Eulerian; Multiscale multiphysics; Fluid–solid interaction; Poroelasticity; Asymptotic homogenisation; Adaptive sampling; Porous media
Résumé :
[en] This contribution introduces and discusses a formulation of poro-hyperelasticity at finite strains. The prediction of the time-dependent response of such media requires consideration of their characteristic multi-scale and multi-physics parameters. In the present work this is achieved by formulating a non-dimensionalised fluid–solid interaction problem (FSI) at the pore level using an arbitrary Lagrange–Euler description (ALE). The resulting coupled systems of PDEs on the reference configuration are expanded and analysed using the asymptotic homogenisation technique. This approach yields three partially novel systems of PDEs: the macroscopic/effective problem and two supplementary microscale problems (fluid and solid). The latter two provide the microscopic response fields whose average value is required in real-time/online form to determine the macroscale response (a concurrent multi-scale approach). In order to overcome the computational challenges related to the above multi-scale closure, this work introduces a surrogate approach for replacing the direct numerical simulation with an artificial neural network. This methodology allows for solving finite strain (multi-scale) porohyperelastic problems accurately using direct automated differentiation through the strain energy. Optimal and reliable training data sets are produced from direct numerical simulations of the fully-resolved problem by including a simple real-time output density check for adaptive sampling step refinement. The data-driven approach is complemented by a sensitivity analysis of the RVE response. The significance of the presented approach for finite strain poro-elasticity/poro-hyperelasticity is shown in the numerical benchmark of a multi-scale confined consolidation problem. Finally, to show the robustness of the method, the system response is dimensionalised using characteristic values of soil and brain mechanics scenarios.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DEHGHANI, Hamidreza ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Finite strain poro-hyperelasticity: an asymptotic multi-scale ALE-FSI approach supported by ANNs
Date de publication/diffusion :
janvier 2023
Titre du périodique :
Computational Mechanics
ISSN :
0178-7675
eISSN :
1432-0924
Maison d'édition :
Springer, New York, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Disponible sur ORBilu :
depuis le 20 janvier 2023

Statistiques


Nombre de vues
133 (dont 6 Unilu)
Nombre de téléchargements
101 (dont 0 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
9
citations OpenAlex
 
17
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu