[en] Uveal melanoma (UM) is a rare type of malignancy that originates from melanocytes located in the choroid, iris and the ciliary body of the eye. UM has a very high mortality upon metastatic spread to the liver, the prime target organ for UM metastasis. The lack of effective therapies for advanced stages of the disease aggravate the prognosis further. Moreover, biomarkers for early detection and progression of UM, especially the molecular traits governing the development of metastasis, are still not available in clinical practice. One extensively studied components of liquid biopsies are exosomes, a subtype of extracellular vesicle. Due to their unique molecular cargo, they could be used as carriers of early markers of cancer development and progression. For characterisation of the miRNA profiles present in circulating serum-derived exosomes of patients with diagnosed primary and metastatic UM, we have analysed the miRNA cargos using next-generation sequencing followed by RT-qPCR validation in a cohort of patients (control n=20; primary n=9; metastatic n=11). Nine miRNAs clearly differentiating these patient groups have been established. We show that hsa-miR-223 and hsa-miR-203a are the most promising biomarker candidates, allowing categorization of patients into local and advanced UM. Additionally, the comparison of miRNA expression levels in exosomes derived from UM patients with those derived from healthy donors, revealed that hsa-miR-144 has the potential to be used as an early marker for presence of UM. Taken together, this pilot study reveals that miRNAs extracted from circulating exosomes could be exploited as potential biomarkers in UM diagnosis and, more importantly, for indicating metastatic spread.
Disciplines :
Oncology
Author, co-author :
WROBLEWSKA, Joanna Patrycja ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) ; Poznan University of Medical Sciences > Department of Oncologic Pathology and Prophylaxis ; Greater Poland Cancer Center (GPCC) > Department of Tumor Pathology
Lach, Michał Stefan; Greater Poland Cancer Center (GPCC) > Radiobiology Laboratory, Department of Medical Physics ; Poznan University of Medical Sciences > Department of Orthopedics and Traumatology
Rucinski, Marcin; Poznan University of Medical Sciences > Department of Histology and Embryology
Piotrowski, Igor; Greater Poland Cancer Center (GPCC) > Radiobiology Laboratory, Department of Medical Physics ; Poznan University of Medical Sciences > Department of Electroradiology
Galus, Lukasz; Poznan University of Medical Sciences > Department of Medical and Experimental Oncology
Suchorska, Wiktoria Maria; Greater Poland Cancer Center (GPCC) > Radiobiology Laboratory, Department of Medical Physics ; Poznan University of Medical Sciences > Department of Electroradiology
KREIS, Stephanie ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Marszałek, Andrzej; Poznan University of Medical Sciences > Department of Oncologic Pathology and Prophylaxis ; Greater Poland Cancer Center (GPCC) > Department of Tumor Pathology
External co-authors :
yes
Language :
English
Title :
MiRNAs from serum-derived extracellular vesicles as biomarkers for uveal melanoma progression
Achberger S. Aldrich W. Tubbs R. Crabb J. W. Singh A. D. Triozzi P. L. (2014). Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol. Immunol. 58 (2), 182–186. 10.1016/j.molimm.2013.11.018
Alba-Bernal A. Lavado-Valenzuela R. Domínguez-Recio M. E. Jiménez-Rodriguez B. Queipo-Ortuño M. I. Alba E. et al. (2020). Challenges and achievements of liquid biopsy technologies employed in early breast cancer. EBioMedicine 62, 103100. 10.1016/j.ebiom.2020.103100
Alix-Panabières C. Pantel K. (2021). Liquid biopsy: From discovery to clinical application. Cancer Discov. 11 (4), 858–873. 10.1158/2159-8290.Cd-20-1311
Amaro A. Croce M. Ferrini S. Barisione G. Gualco M. Perri P. et al. (2020). Potential onco-suppressive role of miR122 and miR144 in uveal melanoma through ADAM10 and C-met inhibition. Cancers 12 (6), 1468. 10.3390/cancers12061468
Ambrosini G. Rai A. J. Carvajal R. D. Schwartz G. K. (2022). Uveal melanoma exosomes induce a prometastatic microenvironment through macrophage migration inhibitory factor. Mol. Cancer Res. 20 (4), 661–669. 10.1158/1541-7786.Mcr-21-0526
Aughton K. Kalirai H. Coupland S. E. (2020). MicroRNAs and uveal melanoma: Understanding the diverse role of these small molecular regulators. Int. J. Mol. Sci. 21 (16), 5648. 10.3390/ijms21165648
Barok M. Puhka M. Vereb G. Szollosi J. Isola J. Joensuu H. (2018). Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC cancer 18 (1), 504. 10.1186/s12885-018-4418-2
Bartel D. P. (2018). Metazoan MicroRNAs. Cell 173 (1), 20–51. 10.1016/j.cell.2018.03.006
Berus T. Halon A. Markiewicz A. Orlowska-Heitzman J. Romanowska-Dixon B. Donizy P. (2017). Clinical, histopathological and cytogenetic prognosticators in uveal melanoma - a comprehensive review. Anticancer Res. 37 (12), 6541–6549. 10.21873/anticanres.12110
Bidard F.-C. Madic J. Mariani P. Piperno-Neumann S. Rampanou A. Servois V. et al. (2014). Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int. J. Cancer 134 (5), 1207–1213. 10.1002/ijc.28436
Bryzgunova O. Konoshenko M. Zaporozhchenko I. Yakovlev A. Laktionov P. (2021). Isolation of cell-free miRNA from biological fluids: Influencing factors and methods. Diagnostics 11 (5), 865. 10.3390/diagnostics11050865
Cava C. Colaprico A. Bertoli G. Graudenzi A. Silva T. C. Olsen C. et al. (2017). SpidermiR: An R/bioconductor package for integrative analysis with miRNA data. Int. J. Mol. Sci. 18 (2), 274. 10.3390/ijms18020274
Cesi G. Walbrecq G. Margue C. Kreis S. (2016). Transferring intercellular signals and traits between cancer cells: Extracellular vesicles as “homing pigeons”. Cell Commun. Signal. 14 (1), 13. 10.1186/s12964-016-0136-z
Costa-Silva B. Aiello N. M. Ocean A. J. Singh S. Zhang H. Thakur B. K. et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17 (6), 816–826. 10.1038/ncb3169
Damato B. (2018). Ocular treatment of choroidal melanoma in relation to the prevention of metastatic death - a personal view. Prog. Retin Eye Res. 66, 187–199. 10.1016/j.preteyeres.2018.03.004
Eldh M. Olofsson Bagge R. Lässer C. Svanvik J. Sjöstrand M. Mattsson J. et al. (2014). MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer 14, 962. 10.1186/1471-2407-14-962
Fong M. Y. Zhou W. Liu L. Alontaga A. Y. Chandra M. Ashby J. et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17 (2), 183–194. 10.1038/ncb3094
Goldie B. J. Dun M. D. Lin M. Smith N. D. Verrills N. M. Dayas C. V. et al. (2014). Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 42 (14), 9195–9208. 10.1093/nar/gku594
Heinemann F. G. Tolkach Y. Deng M. Schmidt D. Perner S. Kristiansen G. et al. (2018). Serum miR-122-5p and miR-206 expression: Non-invasive prognostic biomarkers for renal cell carcinoma. Clin. Epigenetics 10, 11. 10.1186/s13148-018-0444-9
Ignatiadis M. Sledge G. W. Jeffrey S. S. (2021). Liquid biopsy enters the clinic — Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18 (5), 297–312. 10.1038/s41571-020-00457-x
Jin E. Burnier J. V. (2021). Liquid biopsy in uveal melanoma: Are we there yet? Ocular Oncol. Pathology 7 (1), 1–16. 10.1159/000508613
Joshi P. Kooshki M. Aldrich W. Varghai D. Zborowski M. Singh A. D. et al. (2016). Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin. Exp. Metastasis 33 (8), 829–838. 10.1007/s10585-016-9815-9
Kaliki S. Shields C. L. (2017). Uveal melanoma: Relatively rare but deadly cancer. Eye (Lond) 31 (2), 241–257. 10.1038/eye.2016.275
Kalluri R. LeBleu V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367(6478), eaau6977. 10.1126/science.aau6977
Krantz B. A. Dave N. Komatsubara K. M. Marr B. P. Carvajal R. D. (2017). Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol. 11, 279–289. 10.2147/OPTH.S89591
Langmead B. Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 (4), 357–359. 10.1038/nmeth.1923
Lobb R. J. van Amerongen R. Wiegmans A. Ham S. Larsen J. E. Möller A. (2017). Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int. J. Cancer 141 (3), 614–620. 10.1002/ijc.30752
Ludwig N. Hong C. S. Ludwig S. Azambuja J. H. Sharma P. Theodoraki M. N. et al. (2019). Isolation and analysis of tumor-derived exosomes. Curr. Protoc. Immunol. 127 (1), e91. 10.1002/cpim.91
Luz Pessuti C. Fialho Costa D. Ribeiro K. S. Abdouh M. Tsering T. Nascimento H. et al. (2022). Characterization of extracellular vesicles isolated from different liquid biopsies of uveal melanoma patients. J. Circulating Biomarkers 11 (1), 36–47. 10.33393/jcb.2022.2370
Madic J. Piperno-Neumann S. Servois V. Rampanou A. Milder M. Trouiller B. et al. (2012). Pyrophosphorolysis-activated polymerization detects circulating tumor DNA in metastatic uveal melanoma. Clin. Cancer Res. 18 (14), 3934–3941. 10.1158/1078-0432.Ccr-12-0309
Margue C. Reinsbach S. Philippidou D. Beaume N. Walters C. Schneider J. G. et al. (2015). Comparison of a healthy miRNome with melanoma patient miRNomes: Are microRNAs suitable serum biomarkers for cancer? Oncotarget 6 (14), 12110–12127. 10.18632/oncotarget.3661
Ohshima K. Inoue K. Fujiwara A. Hatakeyama K. Kanto K. Watanabe Y. et al. (2010). Let-7 MicroRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLOS ONE 5 (10), e13247. 10.1371/journal.pone.0013247
Omar H. A. El-Serafi A. T. Hersi F. Arafa E.-S. A. Zaher D. M. Madkour M. et al. (2019). Immunomodulatory MicroRNAs in cancer: Targeting immune checkpoints and the tumor microenvironment. FEBS J. 286 (18), 3540–3557. 10.1111/febs.15000
Qu Y. Li W.-C. Hellem M. R. Rostad K. Popa M. McCormack E. et al. (2013). MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int. J. Cancer 133 (3), 544–555. 10.1002/ijc.28056
Ragusa M. Barbagallo C. Statello L. Caltabiano R. Russo A. Puzzo L. et al. (2015). miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol. Ther. 16 (9), 1387–1396. 10.1080/15384047.2015.1046021
Robertson A. G. Shih J. Yau C. Gibb E. A. Oba J. Mungall K. L. et al. (2017). Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32 (2), 204–220.e15. e215. 10.1016/j.ccell.2017.07.003
Robinson M. D. McCarthy D. J. Smyth G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (1), 139–140. 10.1093/bioinformatics/btp616
Russo A. Caltabiano R. Longo A. Avitabile T. Franco L. M. Bonfiglio V. et al. (2016). Increased levels of miRNA-146a in serum and histologic samples of patients with uveal melanoma. Front. Pharmacol. 7, 424. 10.3389/fphar.2016.00424
Stark M. S. Gray E. S. Isaacs T. Chen F. K. Millward M. McEvoy A. et al. (2019). A panel of circulating MicroRNAs detects uveal melanoma with high precision. Transl. Vis. Sci. Technol. 8 (6), 12. 10.1167/tvst.8.6.12
Sun L. Bian G. Meng Z. Dang G. Shi D. Mi S. (2015). MiR-144 inhibits uveal melanoma cell proliferation and invasion by regulating c-met expression. PLOS ONE 10 (5), e0124428. 10.1371/journal.pone.0124428
Surman M. Hoja-Łukowicz D. Szwed S. Kędracka-Krok S. Jankowska U. Kurtyka M. et al. (2019). An insight into the proteome of uveal melanoma-derived ectosomes reveals the presence of potentially useful biomarkers. Int. J. Mol. Sci. 20 (15), 3789. 10.3390/ijms20153789
Triozzi P. L. Achberger S. Aldrich W. Crabb J. W. Saunthararajah Y. Singh A. D. (2016). Association of tumor and plasma microRNA expression with tumor monosomy-3 in patients with uveal melanoma. Clin. Epigenetics 8, 80. 10.1186/s13148-016-0243-0
Tsering T. Laskaris A. Abdouh M. Bustamante P. Parent S. Jin E. et al. (2020). Uveal melanoma-derived extracellular vesicles display transforming potential and carry protein cargo involved in metastatic niche preparation. Cancers 12 (10), 2923. 10.3390/cancers12102923
Walbrecq G. Lecha O. Gaigneaux A. Fougeras M. R. Philippidou D. Margue C. et al. (2020). Hypoxia-induced adaptations of miRNomes and proteomes in melanoma cells and their secreted extracellular vesicles. Cancers 12 (3), 692. 10.3390/cancers12030692
Wang S. Zheng W. Ji A. Zhang D. Zhou M. (2019). Overexpressed miR-122-5p promotes cell viability, proliferation, migration and glycolysis of renal cancer by negatively regulating PKM2. Cancer Manag. Res. 11, 9701–9713. 10.2147/cmar.S225742
Wróblewska J. P. Lach M. S. Kulcenty K. Galus Ł. Suchorska W. M. Rösel D. et al. (2021). The analysis of inflammation-related proteins in a cargo of exosomes derived from the serum of uveal melanoma patients reveals potential biomarkers of disease progression. Cancers 13 (13), 3334. 10.3390/cancers13133334
Wyciszkiewicz A. Lach M. S. Wróblewska J. P. Michalak M. Suchorska W. M. Kalinowska A. et al. (2021). The involvement of small heat shock protein in chemoresistance in ovarian cancer - in vitro study. Excli J. 20, 935–947. 10.17179/excli2021-3706
Yu G. Wang L. G. Han Y. He Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16 (5), 284–287. 10.1089/omi.2011.0118
Zhou N. Chen Y. Yang L. Xu T. Wang F. Chen L. et al. (2021). LncRNA SNHG4 promotes malignant biological behaviors and immune escape of colorectal cancer cells by regulating the miR-144-3p/MET axis. Am. J. Transl. Res. 13 (10), 11144–11161.