Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
On Improving Slant Wet delays for Tracking Severe Weather Events: An evaluation During Two Storms in Europe
TEFERLE, Felix Norman; HUNEGNAW, Addisu; Duman, Huseyin et al.
2022American Geophysical Union (AGU) Fall Meeting 2022
 

Documents


Texte intégral
G33A_03_Teferle_etal_AGUFM22_final.pptx
Preprint Auteur (14.62 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
GPS; slant wet delay; Multipath Stacking map
Résumé :
[en] Climate change has led to an increase in the frequency and severity of weather events with intense precipitation and, subsequently, a greater susceptibility of communities around the world to flash flooding. Networks of ground-based Global Navigation Satellite System (GNSS) stations enable the measurement of integrated water vapor along slant pathways, providing three-dimensional (3D) water vapor distributions at low-cost and in real-time. This makes these data a valuable complementary source of information for tracking storm events and predicting their paths. However, it is well established that residual modelling errors and multipath (MP) effects at GNSS stations do impact incoming signals, especially at low elevations and during storms when the atmospheric conditions change rapidly. Until now, the bulk of GNSS products for meteorology are estimates of the more conventional zenith total delays and horizontal gradients, but these products may not be most appropriate for determining 3D distributions of water vapor during convective storm events. In this study we investigate the impact of residual-phase-corrected and multipath-corrected slant wet delay (SWD) estimates on tracking extreme weather events using two events in Europe that led to flooding, damage to property and loss of life. We employed Precise Point Positioning (PPP) with integer ambiguity resolution to generate station-specific MP correction maps. The spatial stacking was carried out in congruent cells with an optimal resolution in elevation and azimuth at the local horizon but with decreasing azimuth resolution as the elevation angle increases. This permits an approximately equal number of observations allocated to each cell. In our analysis we recovered the one-way SWD by adding GNSS post-fit phase residuals, representing the non-isotropic component of the SWD, i.e., the higher-order inhomogeneity. Using the derived MP maps in a final step, the one-way SWD were improved to employ them for the analysis of the weather event. Moreover, we validated the SWD between ground-based water-vapor radiometry and GNSS-derived SWD for different elevation angles. Furthermore, the spatio-temporal fluctuations in the SWD as measured by GNSS closely mirrored the moisture field from the ERA5 re-analysis associated with this severe weather event
Disciplines :
Sciences de la terre & géographie physique
Auteur, co-auteur :
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
HUNEGNAW, Addisu  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Duman, Huseyin;  Yildiz Technical University
Baltaci, Hakki;  Turkish State Meteorological Service
Ejigu, Yohannes G.;  Wolkite University
Dousa, Jan;  Geodetic Observatory Pecny
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
On Improving Slant Wet delays for Tracking Severe Weather Events: An evaluation During Two Storms in Europe
Date de publication/diffusion :
14 décembre 2022
Nombre de pages :
12
Nom de la manifestation :
American Geophysical Union (AGU) Fall Meeting 2022
Organisateur de la manifestation :
American Geophysical Union (AGU)
Lieu de la manifestation :
Chicago, IL, USA, Etats-Unis
Date de la manifestation :
14-12-2022
Manifestation à portée :
International
Focus Area :
Physics and Materials Science
Projet FnR :
FNR12909050 - Advanced Asymmetry Tropospheric Products For Meteorology From Gnss And Sar Observations, 2018 (01/02/2019-31/07/2022) - Norman Teferle
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 18 janvier 2023

Statistiques


Nombre de vues
124 (dont 6 Unilu)
Nombre de téléchargements
357 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu