BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Colossal Enhancement of Atomic Force Response in van der Waals Materials Arising from Many-Body Electronic Correlations
Publication date :
10 March 2022
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, New York, United States - New York
F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017). RMPHAT 0034-6861 10.1103/RevModPhys.89.015003
N. W. Ashcroft and N. D. Mermin, Solid State Physics, HRW international editions (Holt, Rinehart and Winston, New York, U.S.A., 1976).
S. Y. Savrasov and D. Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory, Phys. Rev. B 54, 16487 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.54.16487
L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104, 1189 (1956). PHRVAO 0031-899X 10.1103/PhysRev.104.1189
S. Dal Forno and J. Lischner, Electron-phonon coupling and hot electron thermalization in titanium nitride, Phys. Rev. Mater. 3, 115203 (2019). PRMHAR 2475-9953 10.1103/PhysRevMaterials.3.115203
L. Guin, J. L. Raphanel, and J. W. Kysar, Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene, J. Appl. Phys. 119, 245107 (2016). JAPIAU 0021-8979 10.1063/1.4954682
K. Gall, M. F. Horstemeyer, M. Van Schilfgaarde, and M. I. Baskes, Atomistic simulations on the tensile debonding of an aluminum-silicon interface, J. Mech. Phys. Solids 48, 2183 (2000). JMPSA8 0022-5096 10.1016/S0022-5096(99)00086-1
M. Xu, A. Tabarraei, J. T. Paci, J. Oswald, and T. Belytschko, A coupled quantum/continuum mechanics study of graphene fracture, Int. J. Fract. 173, 163 (2012). IJFRAP 0376-9429 10.1007/s10704-011-9675-x
S. Serebrinsky, E. A. Carter, and M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, J. Mech. Phys. Solids 52, 2403 (2004). JMPSA8 0022-5096 10.1016/j.jmps.2004.02.010
O. Barrera, D. Bombac, Y. Chen, T. D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. R. Kermode, Understanding and mitigating hydrogen embrittlement of steels: A review of experimental, modelling and design progress from atomistic to continuum, J. Mater. Sci. 53, 6251 (2018). JMTSAS 0022-2461 10.1007/s10853-017-1978-5
R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C. Schatz, and T. Belytschko, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Phys. Rev. B 75, 075412 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.075412
P. Hofmann, I. Y. Sklyadneva, E. D. L. Rienks, and E. V. Chulkov, Electron-phonon coupling at surfaces and interfaces, New J. Phys. 11, 125005 (2009). NJOPFM 1367-2630 10.1088/1367-2630/11/12/125005
L. Pintschovius, Electron-phonon coupling effects explored by inelastic neutron scattering, Phys. Stat. Solids B 242, 30 (2004) 10.1002/pssb.200404951.
W. A. Curtin and R. E. Miller, Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Eng. 11, R33 (2003). MSMEEU 0965-0393 10.1088/0965-0393/11/3/201
P. Hauseux, T.-T. Nguyen, A. Ambrosetti, K. Saleme Ruiz, S. P. A. Bordas, and A. Tkatchenko, From quantum to continuum mechanics in the delamination of atomically-thin layers from substrates, Nat. Commun. 11, 1651 (2020). NCAOBW 2041-1723 10.1038/s41467-020-15480-w
A. Ambrosetti, N. Ferri, R. A. DiStasio Jr., and A. Tkatchenko, Wavelike charge density fluctuations and van der Waals interactions at the nanoscale, Science 351, 1171 (2016). SCIEAS 0036-8075 10.1126/science.aae0509
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London) 438, 197 (2005). NATUAS 0028-0836 10.1038/nature04233
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum hall effect and Berry's phase in graphene, Nature (London) 438, 201 (2005). NATUAS 0028-0836 10.1038/nature04235
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 902 (2008). NALEFD 1530-6984 10.1021/nl0731872
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008). SCIEAS 0036-8075 10.1126/science.1157996
S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. DiStasio Jr., and J. Park, Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain, Science 359, 1131 (2018). SCIEAS 0036-8075 10.1126/science.aao5360
A. Ambrosetti and P. L. Silvestrelli, Faraday-like screening by two-dimensional nanomaterials: A scale-dependent tunable effect, J. Phys. Chem. Lett. 10, 2044 (2019). JPCLCD 1948-7185 10.1021/acs.jpclett.9b00860
S. R. Na, J. W. Suk, L. Tao, D. Akinwande, R. S. Ruoff, R. Huang, and K. M. Liechti, Selective mechanical transfer of graphene from seed copper foil using rate effects, ACS Nano 9, 1325 (2015). ANCAC3 1936-0851 10.1021/nn505178g
S. R. Na, S. Rahimi, L. Tao, H. Chou, S. K. Ameri, D. Akinwande, and K. M. Liechti, Clean graphene interfaces by selective dry transfer for large area silicon integration, Nanoscale 8, 7523 (2016). NANOHL 2040-3364 10.1039/C5NR06637A
H. Xin, R. Borduin, W. Jiang, K. M. Liechti, and W. Li, Adhesion energy of as-grown graphene on copper foil with a blister test, Carbon 123, 243 (2017). CRBNAH 0008-6223 10.1016/j.carbon.2017.07.053
S. R. Na, D. A. Sarceno, and K. M. Liechti, Ultra long-range interactions between silicon surfaces, Int. J. Solids Struct. 80, 168 (2016). IJSOAD 0020-7683 10.1016/j.ijsolstr.2015.11.001
P. Loskill, H. Hähl, T. Faidt, S. Grandthyll, F. Müller, and K. Jacobs, Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions, Adv. Colloid Interface Sci. 179, 107 (2012). ACISB9 0001-8686 10.1016/j.cis.2012.06.006
J. F. Dobson, A. White, and A. Rubio, Asymptotics of the Dispersion Interaction: Analytic Benchmarks for van der Waals Energy Functionals, Phys. Rev. Lett. 96, 073201 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.073201
J. F. Dobson, Unusual features of the dispersion force in layered and striated nanostructures, Surf. Sci. 601, 5667 (2007). SUSCAS 0039-6028 10.1016/j.susc.2007.06.041
J. F. Dobson and T. Gould, Calculation of dispersion energies, J. Phys. Condens. Matter 24, 073201 (2012). JCOMEL 0953-8984 10.1088/0953-8984/24/7/073201
A. Ambrosetti, P. L. Silvestrelli, and A. Tkatchenko, Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction, Phys. Rev. B 95, 235417 (2017). PRBMDO 2469-9950 10.1103/PhysRevB.95.235417
J. Sarabadani, A. Naji, R. Asgari, and R. Podgornik, Many-body effects in the van der Waals-Casimir interaction between graphene layers, Phys. Rev. B 84, 155407 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.155407
A. Tkatchenko and M. Scheffler, Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data, Phys. Rev. Lett. 102, 073005 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.073005
A. Tkatchenko, A. Ambrosetti, and R. A. DiStasio Jr., Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem, J. Chem. Phys. 138, 074106 (2013). JCPSA6 0021-9606 10.1063/1.4789814
A. Tkatchenko, R. A. DiStasio Jr., R. Car, and M. Scheffler, Accurate and Efficient Method for Many-Body van der Waals Interactions, Phys. Rev. Lett. 108, 236402 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.236402
A. Ambrosetti, A. M. Reilly, R. A. DiStasio Jr., and A. Tkatchenko, Long-range correlation energy calculated from coupled atomic response functions, J. Chem. Phys. 140, 18A508 (2014). JCPSA6 0021-9606 10.1063/1.4865104
X. Liu, J. Hermann, and A. Tkatchenko, Communication: Many-body stabilization of non-covalent interactions: Structure, stability, and mechanics of Ag3Co(CN)6 framework, J. Chem. Phys. 145, 241101 (2016). JCPSA6 0021-9606 10.1063/1.4972810
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.128.106101 for detailed analysis of Hessian calculations for a graphene layer and a carbon nanotube, as well as additional results for graphene delamination from silicon substrate.
S. R. Na, J. W. Suk, R. S. Ruoff, R. Huang, and K. M. Liechti, Ultra long-range interactions between large area graphene and silicon, ACS Nano 8, 11234 (2014). ANCAC3 1936-0851 10.1021/nn503624f