Eprint already available on another site (E-prints, Working papers and Research blog)
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
KASPRZAK, Mikolaj; Giordano, Ryan; Broderick, Tamara
2022
 

Files


Full Text
2209.14992.pdf
Author preprint (1.19 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Mathematics
Author, co-author :
KASPRZAK, Mikolaj ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Giordano, Ryan;  Massachusetts Institute of Technology - MIT
Broderick, Tamara;  Massachusetts Institute of Technology - MIT
Language :
English
Title :
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Publication date :
2022
Funders :
CE - Commission Européenne
Available on ORBilu :
since 17 January 2023

Statistics


Number of views
23 (0 by Unilu)
Number of downloads
67 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu