[en] Dirichlet’s theorem on primes in arithmetic progressions states that for any positive integer q and any coprime integer a, there are infinitely many primes in the arithmetic progression a + nq (n ∈ N). Unfortunately, the theorem does not predict the gap between those primes. Several renowned open questions such as the size of Linnik’s constant try to say more about the distribution of such primes. This manuscript postulates a weak, but explicit, generalization of Linnik’s theorem, namely that each geometric interval [q^t, q^(t+1)] contains a prime from each coprime congruence class modulo q ∈ N≥2. Subsequently, it proves the conjecture theoretically for all sufficiently large t, as well as computationally for all sufficiently small q. Finally, the impact of this conjecture on a result of Pomerance related to Carmichael’s conjecture is outlined.
Disciplines :
Mathematics
Author, co-author :
Barthel, Jim Jean-Pierre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Müller, Volker ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
External co-authors :
no
Language :
English
Title :
A Conjecture on Primes in Arithmetic Progressions and Geometric Intervals
Bach, E., Shallit, J. (1996). Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press.
Bennett, A. M., Martin, G., O’Bryant, K., Rechnitzer, A. (2018). Explicit bounds for primes in arithmetic progressions. Illinois J. Math. 62 (1–4): 427–532. DOI: 10.1215/ijm/1552442669.
Bombieri, E., Friedlander, J. B., Iwaniec, H. (1989). Primes in arithmetic progressions to large moduli. III. J. Amer. Math. Soc. 2 (2): 215–224. DOI: 10.1090/S0894-0347-1989-0976723-6.
Carmichael, R. D. (1907). On Euler’s -function. Bull. Amer. Math. Soc. 13 (5): 241–243. DOI: 10.1090/S0002-9904-1907-01453-2.
Carmichael, R. D. (1922). Note on Euler’s -function. Bull. Amer. Math. Soc. 28 (3): 109–110. DOI: 10.1090/S0002-9904-1922-03504-5.
Chowla, S. (1934). On the least prime in an arithmetical progression. Acta Arith. 1 (2): 1–3.
Dirichlet, P. G. L. (1837). Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abh. K. Preuss. Akad. Wiss. 45–81.
Ford, K. (1998). The distribution of totients. Ramanujan J. 2 (1–2): 67–151. doi.org/ DOI: 10.1023/A:1009761909132.
Heath-Brown, D. R. (1992). Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64 (2): 265–338. DOI: 10.1112/plms/s3-64.2.265.
Linnik, U. V. (1944). On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S. 15 (57): 139–178. mi.mathnet.ru/eng/msb6196
Linnik, U. V. (1944). On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15 (57): 347–368. mi.mathnet.ru/eng/msb6202
Pomerance, C. (1974). On Carmichael’s conjecture. Proc. Amer. Math. Soc. 43 (2): 297–298. DOI: 10.1090/S0002-9939-1974-0340161-0.
Schinzel, A., Sierpiński, W. (1958). Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (3): 185–208. eudml.org/doc/206115
Xylouris, T. (2018). Linniks Konstante ist kleiner als 5. Chebyshevskii Sb. 19 (3): 80–94. DOI: 10.22405/2226-8383-2018-19-3-80-94.