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Abstract. Dirichlet’s theorem on primes in arithmetic progressions states that for
any positive integer q and any coprime integer a, there are infinitely many primes
in the arithmetic progression a + nq (n ∈ N). Unfortunately, the theorem does not
predict the gap between those primes. Several renowned open questions such as the
size of Linnik’s constant try to say more about the distribution of such primes.
This manuscript postulates a weak, but explicit, generalization of Linnik’s the-
orem, namely that each geometric interval [qt, qt+1] contains a prime from each
coprime congruence class modulo q ∈ N≥2. Subsequently, it proves the conjecture
theoretically for all sufficiently large t, as well as computationally for all sufficiently
small q. Finally, the impact of this conjecture on a result of Pomerance related to
Carmichael’s conjecture is outlined.

1. AN EXPLICIT GENERALIZATION OF LINNIK’S THEOREM.
Dirichlet’s theorem on primes in arithmetic progressions [7] is the direct gener-
alization of Euclid’s theorem on the infinity of primes to the setting of arithmetic
progressions. Sadly, both of those theorems are purely existential and do not
hint at the exact distribution of primes; a fact that has already puzzled mathe-
maticians for several centuries. A first milestone was achieved in 1896 when the
Prime Number Theorem describing the asymptotic distribution of primes was
independently proven by Hadamard and De la Vallée Poussin. Shortly after, De
la Vallée Poussin generalized his findings to primes in arithmetic progressions,
indicating that the primes are evenly distributed among the coprime congruence
classes. Over the last century, many mathematicians improved the asymptotic
limits for the distribution of primes and outlined explicit computational bounds.
Whereas the picture slowly clarifies for primes in general, there are not many
explicit results for primes in arithmetic progressions. In fact, their study turns
out to be extremely challenging if short intervals are involved. One example
of this is the strenuous quest for predicting the size of the smallest prime in
an arithmetic progression. An amazing result in this direction was achieved by
Linnik in 1944 with the following theorem ([10], [11]).

Theorem 1 (Linnik). There are absolute constants C and L such that for any
q ∈ N≥2 and any 1 ≤ a ≤ q − 1 with gcd(a, q) = 1, the smallest prime p0 ≡ a
(mod q) does not exceed CqL.

Although Linnik did not write out his predicted constants C and L, his devel-
opment showed them to be effectively computable. Today, the infimum over all
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possible absolute constants L for which Theorem 1 holds is known as Linnik’s
constant. After several years of research, the best unconditional upper bound
for Linnik’s constant is L ≤ 5 [14] and under GRH one may conclude that any
constant L > 2 is admissible [6]. Nonetheless, aligned with Schinzel’s conjec-
ture H2 [13], the detailed survey [9] conjectures the upper bound L ≤ 2 and
[3] shows that this actually holds for almost all moduli. After discussing the
smallest prime in an arithmetic progression, one may go on and ask about the
subsequent primes. Setting C = 1 and varying only the exponent in Theorem
1 leads to the following conjecture.
Conjecture 2. For any positive integers q ≥ 2, 1 ≤ a ≤ q − 1 with gcd(q, a) =
1, and t ≥ 1, there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a (mod q). (1)

Of course, if primes smaller than q are allowed and t = 1, one recovers the
conjecture on the size of Linnik’s constant. Consequently, it is not surprising
that Conjecture 2 is extremely difficult to prove for small exponents. However,
the picture changes when t increases. Indeed, the expansion of these geometric
intervals is faster than the decrease of the occurrence of primes. Thus, for suf-
ficiently large t, the interval [qt, qt+1] will contain many primes of the desired
form. One could even shrink the considered intervals and still conclude that they
contain one prime from each congruence class. Whereas this is the main focus
of most recent asymptotic results, Conjecture 2 is meant to be fully explicit
without any hidden constants. Although it does not reflect the optimal interval
length for the existential conclusion, it gives a practical range for retrieving
such primes. Furthermore, it is deeply connected with other classical results
such as Bertrand’s postulate, which can be obtained by considering q = 2.
Remark 3. For the sake of clarity, the upcoming development relies on explicit
results only.

2. A PARTIAL PROOF FOR CONJECTURE 2. Recent explicit results
on the distribution of primes in arithmetic progressions allow a partial proof
of Conjecture 2. Indeed, the article [2], accompanied by an enormous compu-
tational data set, gives explicit bounds for the number of primes in bounded
arithmetic progressions.
Theorem 4 (Bennett, Martin, O’Bryant, Rechnitzer). Let q ≥ 3 be an
integer, let a be an integer that is coprime to q, and let ϕ denote the Euler
totient function. Furthermore, let θ denote the first Chebyshev prime counting
function for arithmetic progressions defined by

θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log(p)

where the sum runs over all primes p ≤ x congruent to a modulo q. Then there
exist explicit constants cθ(q) and xθ(q) such that∣∣∣∣θ(x; q, a) − x

ϕ(q)

∣∣∣∣ < cθ(q) x

log(x) ∀x ≥ xθ(q).

Moreover, cθ(q) and xθ(q) satisfy cθ(q) ≤ c0(q) and xθ(q) ≤ x0(q), where

c0(q) =
{

1
840 if 3 ≤ q ≤ 104

1
160 if q > 104 and x0(q) =

{
8 · 109, if 3 ≤ q ≤ 105

exp
(

3
100

√
q(log(q))3) , if q > 105 .
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Theorem 4 gives rise to an explicit lower bound for the exponents for which
Conjecture 2 will hold, that is

Tθ(q) := max
{

cθ(q)ϕ(q)(q + 2)
(q − 1) log(q) − 1; logq(xθ(q)); 1

}
. (2)

Lemma 5. Let q ≥ 3, 1 ≤ a ≤ q − 1 with gcd(a, q) = 1 and t ≥ Tθ(q). Then
there exists a prime p such that qt ≤ p < qt+1 and p ≡ a (mod q).

Proof. By assumption t ≥ Tθ(q) ≥ logq(xθ(q)), and so qt+1 > qt ≥ qlogq(xθ(q)) =
xθ(q). Thus, Theorem 4 yields a lower bound for θ(qt+1; q, a) and an upper
bound for θ(qt; q, a). Combining these bounds leads to the following inequalities:

θ(qt+1; q, a) − θ(qt; q, a) >
qt+1

ϕ(q) − cθ(q) qt+1

(t + 1) log(q) − qt

ϕ(q) − cθ(q) qt

t log(q) ,

≥ qt

[
q − 1
ϕ(q) − cθ(q)

log(q)
qt + t + 1
t(t + 1)

]
,

≥ qt

[
q − 1
ϕ(q) − cθ(q)

log(q)
q + 2
t + 1

]
.

As t ≥ Tθ(q) ≥ cθ(q)ϕ(q)(q+2)
(q−1) log(q) − 1, the last quantity is non-negative, which guar-

antees the existence of a prime p ∈ [qt, qt+1] such that p ≡ a (mod q).

Although, Tθ(q) varies with q, Lemma 5 implies that for a fixed q ≥ 3 Conjecture
2 holds except maybe for finitely many exponents, namely for 0 < t < Tθ(q).
Using the explicit lists of constants cθ(q) and xθ(q) from [2] published at

http://www.nt.math.ubc.ca/BeMaObRe/,
one can computationally verify the conjecture for those finitely many missing
exponents. A verification for all 3 ≤ q ≤ 45000 can be found at

https://files.uni.lu/jim.barthel/PrimesInAP/

and leads to the following conclusion.
Lemma 6. Let 3 ≤ q ≤ 45000, 1 ≤ a ≤ q − 1 with gcd(q, a) = 1, and 1 ≤ t ≤
Tθ(q). Then, there exists a prime p such that qt ≤ p < qt+1 and p ≡ a (mod q).
Using SageMath and its built-in Pari-GP function isprime(), the verification
program computed for each modulus 3 ≤ q ≤ 45000 and each coprime remainder
1 ≤ a ≤ q − 1 an explicit list L(q, a) of primes p1, ..., p⌈Tθ(q)⌉−1 verifying

q < p1 < q2 < p2 < ... < q⌈Tθ(q)⌉−1 < p⌈Tθ(q)⌉−1 < q⌈Tθ(q)⌉

and pi ≡ a (mod q) for all i ∈ {1, ..., ⌈Tθ(q)⌉ − 1}. These lists of primes are
freely accessible and can also be used for other statistical analyses of primes in
arithmetic progressions. Simultaneously, this verification guarantees correctness
of the conjectured size of Linnik’s constant for all q ≤ 45000.
Remark 7. Let li denote the logarithmic integral defined by li(x) =

∫ x

0
dt

log(t) .
Let π denote the usual prime counting function for arithmetic progressions
defined by

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1

January 2014] A CONJECTURE ON PRIMES 3

http://www.nt.math.ubc.ca/BeMaObRe/
https://files.uni.lu/jim.barthel/PrimesInAP/


Mathematical Assoc. of America American Mathematical Monthly 121:1 January 15, 2023 3:35 p.m. output.tex page 4

where the sum runs over all primes p ≤ x congruent to a modulo q. Assuming
the Extended Riemann Hypothesis, [1, Thm. 8.8.18] shows that∣∣∣∣π(x; q, a) − li(x)

ϕ(q)

∣∣∣∣ <
√

x(log(x) + 2 log(q)) ∀x ≥ 2.

Using those conditional bounds, one can show that Conjecture 2 holds for all t ≥
3 when q ≥ 2, and even for t = 2 when q is sufficiently large (i.e. q ≥ 17386763).
Thus, under the Extended Riemann Hypothesis, only the conjectured bound
L ≤ 2 for Linnik’s constant remains to be proven.

3. A CONSEQUENCE FOR CARMICHAEL’S CONJECTURE.
Conjecture 2 is indirectly linked to Carmichael’s totient function conjecture
([4],[5]). Before explaining this link, a short summary of this conjecture is
required.
Conjecture 8 (Carmichael). Let ϕ denote the Euler totient function. For a
given number n, the equation ϕ(x) = n either has no solution at all or it has at
least two solutions.

Correctness of the conjecture has already been proven for all x ≤ 101010 [8], but
the existence of a counterexample has not yet been ruled out for larger values.
The only known attempt for constructing a counterexample has been developed
by Pomerance in [12]. His construction relies on the following observation.
Theorem 9 (Pomerance). If x is a natural number such that for every prime
p, (p − 1)|ϕ(x) implies p2|x, then ϕ(x) = ϕ(y) has only the trivial solution y =
x.

However, Pomerance also points out that likely such a counterexample does not
exist. In particular, he shows that if the following conjecture holds, then there
cannot be a counterexample as it would necessarily be divisible by every single
prime.

Conjecture 10 (Pomerance). If k ≥ 2, then (pk − 1)|
∏k−1

i=1 pi(pi − 1), where
pi denotes the i-th prime.

Translating Pomerance’s conjecture in terms of primes in arithmetic progres-
sions with remainder 1 and comparing it with Conjecture 2 finally reveals the
acclaimed link.
Proposition 11. If Conjecture 2 holds, then Pomerance’s conjecture holds, and
hence there does not exist a counterexample to Carmichael’s conjecture based
on Theorem 9.
Proof. Assume Conjecture 2 holds, and let k ∈ N≥2. In order to prove that (pk −
1)|
∏k−1

i=1 pi(pi − 1), it is sufficient to show that vq(pk − 1) ≤ vq(
∏k−1

i=1 pi(pi − 1))
for all q ∈ {p1, p2, ..., pk−1} where vq : N → N denotes the q-adic valuation map
defined by vq(0) = ∞ and vq(n) = max{v ∈ N : qv|n}. Indeed, any prime divisor
of (pk − 1) is smaller than pk and the valuation map outlines its highest power,
granting an easy comparison of divisors. Accordingly, let q ∈ {p1, p2, ..., pk−1},
then qt ≤ pk − 1 < qt+1 for some t ∈ N. Thus vq(pk − 1) ≤ t. If t = 0, then the
claim is trivial. If t > 0, Conjecture 2 yields

vq

(
k−1∏
i=1

pi(pi − 1)

)
= 1 + vq

(
k−1∏
i=1

(pi − 1)

)
≥ 1 + (t − 1) = t
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where the last inequality follows from Conjecture 2’s claim that for all t′ ∈
{1, ..., t − 1} there is a prime p such that qt′ ≤ p < qt′+1 and p ≡ 1 (mod q).

As Conjecture 2 holds for all q ≤ 45000, Pomerance’s conjecture holds for a
non-negligible proportion of all primes.

Corollary 12. Pomerance’s conjecture holds for any prime pk such that the
largest square factor of pk − 1 is 45000-smooth.

Proof. Pomerance’s conjecture trivially holds whenever pk − 1 is squarefree.
Thus assume that pk − 1 = B2χ where B is 45000-smooth and χ is squarefree.
Regrouping the prime factors gives pk − 1 = B′χ′ where B′ is 45000-smooth
and χ′ is either equal to 1 or squarefree with smallest prime factor larger than
45000. In both cases,

∏k−1
i=1 pi(pi − 1) is trivially divisible by χ′. Furthermore,

the same valuation argument as used in the proof of Proposition 11 shows that
also B′|

∏k−1
i=1 pi(pi − 1), which concludes the proof.

Remark 13. Proposition 11 does not contradict the general existence of a
counterexample of Carmichael’s conjecture, but it only rules out counterexam-
ples stemming from Theorem 9. Corollary 12 thus strengthens the correctness
of Carmichael’s conjecture but is not sufficient to prove it.
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miers. Acta Arith. 4(3): 185-208. eudml.org/doc/206115

14. Xylouris, T. (2018). Linniks Konstante ist kleiner als 5.Chebyshevskii Sb. 19(3): 80-94.
doi.org/10.22405/2226-8383-2018-19-3-80-94

Faculty of Science, Technology and Medicine, University of Luxembourg, Belval 4365, Luxem-
bourg, jim.barthel@uni.lu and volker.muller@uni.lu

6 © the mathematical association of america [Monthly 121


	An explicit generalization of Linnik's theorem.
	A partial proof for Conjecture 2.
	A Consequence for Carmichael's conjecture.

