Article (Périodiques scientifiques)
Image features for quality analysis of thick blood smears employed in malaria diagnosis.
Fong Amaris, W. M.; MARTINEZ LUNA, Carol; Cortés-Cortés, Liliana J. et al.
2022In Malaria Journal, 21 (1), p. 74
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Malaria1 (5).pdf
Preprint Auteur (73.06 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Algorithms; Animals; Image Processing, Computer-Assisted; Malaria/diagnosis; Parasites; Specimen Handling/methods; Staining and Labeling; Coloration quality; Image processing; Malaria diagnosis; TBS
Résumé :
[en] BACKGROUND: The World Health Organization (WHO) provides protocols for the diagnosis of malaria. One of them is related to the staining process of blood samples to guarantee the correct parasite visualization. Ensuring the quality of the staining procedure on thick blood smears (TBS) is a difficult task, especially in rural centres, where there are factors that can affect the smear quality (e.g. types of reagents employed, place of sample preparation, among others). This work presents an analysis of an image-based approach to evaluate the coloration quality of the staining process of TBS used for malaria diagnosis. METHODS: According to the WHO, there are different coloration quality descriptors of smears. Among those, the background colour is one of the best indicators of how well the staining process was conducted. An image database with 420 images (corresponding to 42 TBS samples) was created for analysing and testing image-based algorithms to detect the quality of the coloration of TBS. Background segmentation techniques were explored (based on RGB and HSV colour spaces) to separate the background and foreground (leukocytes, platelets, parasites) information. Then, different features (PCA, correlation, Histograms, variance) were explored as image criteria of coloration quality on the extracted background information; and evaluated according to their capability to classify images as with Good or Bad coloration quality from TBS. RESULTS: For background segmentation, a thresholding-based approach in the SV components of the HSV colour space was selected. It provided robustness separating the background information independently of its coloration quality. On the other hand, as image criteria of coloration quality, among the 19 feature vectors explored, the best one corresponds to the 15-bins histogram of the Hue component with classification rates of > 97%. CONCLUSIONS: An analysis of an image-based approach to describe the coloration quality of TBS was presented. It was demonstrated that if a robust background segmentation is conducted, the histogram of the H component from the HSV colour space is the best feature vector to discriminate the coloration quality of the smears. These results are the baseline for automating the estimation of the coloration quality, which has not been studied before, but that can be crucial for automating TBS's analysis for assisting malaria diagnosis process.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Fong Amaris, W. M.
MARTINEZ LUNA, Carol  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Cortés-Cortés, Liliana J.
Suárez, Daniel R.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Image features for quality analysis of thick blood smears employed in malaria diagnosis.
Date de publication/diffusion :
05 mars 2022
Titre du périodique :
Malaria Journal
eISSN :
1475-2875
Maison d'édition :
BioMed Central, Royaume-Uni
Volume/Tome :
21
Fascicule/Saison :
1
Pagination :
74
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Commentaire :
© 2022. The Author(s).
Disponible sur ORBilu :
depuis le 11 janvier 2023

Statistiques


Nombre de vues
109 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
14
OpenCitations
 
2
citations OpenAlex
 
17
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu