drying droplets; bio-colloids; morphological patterns; pattern recognition; bio medical diagnostics; machine learning algorithm
Abstract :
[en] Drying of biologically-relevant sessile droplets, including passive systems (like DNA and proteins), as well as active microbial systems comprising bacteria and algae, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo drying, with significant potential in a range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the relevant properties of bio-colloids and link their composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We examined the drying patterns generated by passive bio-colloids (DNA, globular, fibrous, and composite proteins, plasma, serum, blood, urine, tears, saliva). This article highlights how morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions. Correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a diagnostic blueprint. Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets, relevant to COVID-19 are also presented. Finally, we summarize the role of biologically active agents in drying process, including bacteria and algae during the drying process. The review concludes with a perspective on the next generation of research and applications based on drying droplets, enabling potential innovations and tools to study this exciting interface of physics, biology, data sciences, and machine learning.
Disciplines :
Physics
Author, co-author :
Pal, Anusuya
Gope, Amalesh
SENGUPTA, Anupam ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Drying of Bio-colloidal Sessile Droplets: Advances, Applications, and Perspectives
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Takhistov, P., Chang, H.-C., Complex stain morphologies. Ind Eng Chem Res 41:25 (2002), 6256–6269.
Tarasevich, Y.Y., Mechanisms and models of the dehydration self-organization in biological fluids. Phys Usp 47 (2004), 717–728.
Zang, D., Tarafdar, S., Tarasevich, Y.Y., Dutta Choudhury, M., Dutta, T., Evaporation of a droplet: From physics to applications. Phys Rep 804 (2019), 1–56 evaporation of a Droplet: From physics to applications.
Langmuir, I., The evaporation of small spheres. Phys Rev, 12(5), 1918, 368.
Picknett, R., Bexon, R., The evaporation of sessile or pendant drops in still air. J Colloid Interface Sci 61:2 (1977), 336–350.
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:6653 (1997), 827–829.
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Contact line deposits in an evaporating drop. Phys Rev E, 62(1), 2000, 756.
Goldstein, R.E., Coffee stains, cell receptors, and time crystals: Lessons from the old literature. Phys Today 71:9 (2018), 32–38.
Vpls, R., Ria, xxvii. a brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos Mag 4:21 (1827), 161–173.
Robert, Brown, XXVII A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. 4:21 (1828), 161–173, 10.1080/14786442808674769.
Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E., Inkjet printing—process and its applications. Adv Mater 22:6 (2010), 673–685.
Brinker, C.J., Lu, Y., Sellinger, A., Fan, H., Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:7 (1999), 579–585.
Cha, Y.J., Park, S.M., You, R., Kim, H., Yoon, D.K., Microstructure arrays of dna using topographic control. Nat Commun 10:1 (2019), 1–8.
Kokornaczyk, M.O., Bodrova, N.B., Baumgartner, S., Diagnostic tests based on pattern formation in drying body fluids–a mapping review. Colloids Surf, B, 208, 2021, 112092.
Sefiane, K., Duursma, G., Arif, A., Patterns from dried drops as a characterisation and healthcare diagnosis technique, potential and challenges: A review. Adv Colloid Interface Sci, 298, 2021, 102546.
Sempels, W., Dier, R.D., Mizuno, H., Hofkens, J., Vermant, J., Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat Commun, 4, 2013.
Kasyap, T.V., Koch, D.L., Wu, M., Bacterial collective motion near the contact line of an evaporating sessile drop. Phys Fluids, 26, 2014.
Andac, T., Weigmann, P., Velu, S.K., Pinçe, E., Volpe, G., Volpe, G., Callegari, A., Active matter alters the growth dynamics of coffee rings. Soft Matter 15 (2019), 1488–1496.
Sengupta, A., Microbial active matter: a topological framework. Front Phys, 8, 2020, 184.
Carrara, F., Sengupta, A., Behrendt, L., Vardi, A., Stocker, R., Bistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence. Proc Natl Acad Sci, USA, 118, 2021, e2005944118.
Dhar, J., Thai, A.L., Ghoshal, A., Giomi, L., Sengupta, A., Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments. Nat Phys 18 (2022), 945–951.
Sengupta, A., Dhar, J., Danza, F., Ghoshal, A., Mueller, S., Kakavand, N., Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. Sci Adv, 8, 2022, eabn6005.
Bianchi, S., Saglimbeni, F., Frangipane, G., Dell'Arciprete, D., Leonardo, R.D., 3d dynamics of bacteria wall entrapment at a water–air interface. Soft Matter 15 (2019), 3397–3406.
Gelderblom, H., Diddens, C., Marin, A., Evaporation-driven liquid flow in sessile droplets. Soft Matter, 2022.
Patil, N.D., Bange, P.G., Bhardwaj, R., Sharma, A., Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir 32:45 (2016), 11958–11972.
Yu, Y.-S., Wang, M.-C., Huang, X., Evaporative deposition of polystyrene microparticles on pdms surface. Sci Rep 7:1 (2017), 1–9.
Pradhan, T.K., Panigrahi, P.K., Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface. Colloids Surf, A 530 (2017), 1–12.
Lama, H., Basavaraj, M.G., Satapathy, D.K., Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter 13:32 (2017), 5445–5452.
Takizawa, M., Sazuka, Y., Horigome, K., Sakurai, Y., Matsui, S., Minato, H., Kureha, T., Suzuki, D., Self-organization of soft hydrogel microspheres during the evaporation of aqueous droplets. Langmuir 34:15 (2018), 4515–4525.
Pal, A., Gope, A., Iannacchione, G., Temperature and concentration dependence of human whole blood and protein drying droplets. Biomolecules, 11(2), 2021, 231.
Pal, A., Gope, A., Iannacchione, G.S., Temperature-dependent Pattern Formation in Drying Aqueous Droplets of Lysozyme. International Journal of Innovative Research in Physics (IJIIP) 2:3 (2021), 61–70, 10.15864/ijiip.2307 ISSN Number (Online)- 2687-7902, (Print) - 2689-484X).
Pal, A., Gope, A., Athair, A.S., Iannacchione, G.S., A comparative study of the drying evolution and dried morphology of two globular proteins in de-ionized water solutions. RSC Adv 10:29 (2020), 16906–16916.
Pal, A., Gope, A., Iannacchione, G.S., A comparative study of the phase separation of a nematic liquid crystal in the self-assembling drying protein drops. MRS Adv 4:22 (2019), 1309–1314.
Pal, A., Gope, A., Iannacchione, G.S., Hierarchical exploration of drying patterns formed in drops containing lysozyme, pbs, and liquid crystals. Processes, 10(5), 2022, 955.
Pal, A., Gope, A., Obayemi, J.D., Iannacchione, G.S., Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood. Sci Rep 10:1 (2020), 1–12.
Sefiane, K., Patterns from drying drops. Adv Colloid Interface Sci 206 (2014), 372–381.
Chen, R., Zhang, L., Zang, D., Shen, W., Blood drop patterns: Formation and applications. Adv Colloid Interface Sci 231 (2016), 1–14.
Tarafdar, S., Tarasevich, Y.Y., Dutta Choudhury, M., Dutta, T., Zang, D., Droplet drying patterns on solid substrates: from hydrophilic to superhydrophobic contact to levitating drops. Adv Condens Matter Phys, 2018 (2018).
Parsa, M., Harmand, S., Sefiane, K., Mechanisms of pattern formation from dried sessile drops. Adv Colloid Interface Sci 254 (2018), 22–47.
Smith, F., Brutin, D., Wetting and spreading of human blood: Recent advances and applications. Curr Opin Colloid Interface Sci 36 (2018), 78–83.
Patil, N.D., Bhardwaj, R., Recent developments on colloidal deposits obtained by evaporation of sessile droplets on a solid surface. J Indian Inst Sci 99:1 (2019), 143–156.
Shao, X., Duan, F., Hou, Y., Zhong, X., Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Adv Colloid Interface Sci, 275, 2020, 102049.
Lohse, D., Zhang, X., Physicochemical hydrodynamics of droplets out of equilibrium. Nat Rev Phys 2:8 (2020), 426–443.
Wang, Z., Orejon, D., Takata, Y., Sefiane, K., Wetting and evaporation of multicomponent droplets. Phys Rep 960 (2022), 1–37.
Mampallil, D., Eral, H.B., A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci 252 (2018), 38–54.
Ying, E.P., Ngali, M.Z., Azmi, M.O.M.Z., An, W.C., Drying droplets: A review on its numerical and experimental studies to remove coffee ring effect. J Adv Res Fluid Mech Therm Sci 69:1 (2020), 46–63.
Al-Milaji, K.N., Zhao, H., New perspective of mitigating the coffee-ring effect: Interfacial assembly. J Phys Chem C 123:19 (2019), 12029–12041.
Deb, R., Sarma, B., Dalal, A., Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter, 2022.
Semenov, S., Starov, V., Velarde, M., Rubio, R., Evaporation of sessile droplets of liquid on solid substrates. Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics, 2013, Springer, 285–300.
Pal, A., Self-assembly and morphological patterns in drying droplets of bio-colloids. Ph.D. thesis, 2021, Worcester Polytechnic Institute.
Mondal, R., Semwal, S., Kumar, P.L., Thampi, S.P., Basavaraj, M.G., Patterns in drying drops dictated by curvature-driven particle transport. Langmuir 34:38 (2018), 11473–11483.
Schamberger, B., Roschger, A., Ziege, R., Anselme, K., Amar, M.B., Bykowski, M., Castro, A.P., Cipitria, A., Coles, R., Dimova, R., et al. Curvature in biological systems: its quantification, emergence and implications across the scales. Adv Mater, 2022, 2206110.
Kolegov, K., Barash, L.Y., Joint effect of advection, diffusion, and capillary attraction on the spatial structure of particle depositions from evaporating droplets. Phys Rev E, 100(3), 2019, 033304.
Weon, B.M., Je, J.H., Capillary force repels coffee-ring effect. Phys Rev E, 82(1), 2010, 015305.
Bhardwaj, R., Fang, X., Somasundaran, P., Attinger, D., Self-assembly of colloidal particles from evaporating droplets: role of dlvo interactions and proposition of a phase diagram. Langmuir 26:11 (2010), 7833–7842.
Fang, X., Li, B., Petersen, E., Seo, Y.-S., Samuilov, V.A., Chen, Y., Sokolov, J.C., Shew, C.-Y., Rafailovich, M.H., Drying of dna droplets. Langmuir 22:14 (2006), 6308–6312.
Smalyukh, I.I., Zribi, O.V., Butler, J.C., Lavrentovich, O.D., Wong, G.C., Structure and dynamics of liquid crystalline pattern formation in drying droplets of dna. Phys Rev Lett, 96(17), 2006, 177801.
Zhang, D., Gao, B., Zhao, C., Liu, H., Visualized quantitation of trace nucleic acids based on the coffee-ring effect on colloid-crystal substrates. Langmuir 35:1 (2018), 248–253.
Carter, D.C., Ho, J.X., Structure of serum albumin. Advances in Protein Chemistry, vol. 45, 1994, Elsevier, 153–203.
Kumar, V., Dash, S., Evaporation-based low-cost method for the detection of adulterant in milk. ACS Omega 6:41 (2021), 27200–27207.
Bouchoux, A., Ventureira, J., Gésan-Guiziou, G., Garnier-Lambrouin, F., Qu, P., Pasquier, C., Pézennec, S., Schweins, R., Cabane, B., Structural heterogeneity of milk casein micelles: a sans contrast variation study. Soft Matter 11:2 (2015), 389–399.
Yu, M., Le Floch-Fouéré, C., Lee, J., Boissel, F., Jeantet, R., Lanotte, L., Phase diagram of dairy protein mixes obtained by single droplet drying experiments. Foods, 11(4), 2022, 562.
Sadek, C., Pauchard, L., Schuck, P., Fallourd, Y., Pradeau, N., Le Floch-Fouéré, C., Jeantet, R., Mechanical properties of milk protein skin layers after drying: Understanding the mechanisms of particle formation from whey protein isolate and native phosphocaseinate. Food Hydrocoll 48 (2015), 8–16.
Sadek, C., Tabuteau, H., Schuck, P., Fallourd, Y., Pradeau, N., Le Floch-Fouere, C., Jeantet, R., Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet. Langmuir 29:50 (2013), 15606–15613.
Keya, J.J., Kudoh, H., Kabir, A.M.R., Inoue, D., Miyamoto, N., Tani, T., Kakugo, A., Shikinaka, K., Radial alignment of microtubules through tubulin polymerization in an evaporating droplet. PloS One, 15(4), 2020, e0231352.
Brutin, D., Sobac, B., Loquet, B., Sampol, J., Pattern formation in drying drops of blood. J Fluid Mech 667 (2011), 85–95.
Yawata, Y., Cell Membrane: The Red Blood Cell as a Model. 2006, John Wiley & Sons.
Alexy, T., Detterich, J., Connes, P., Toth, K., Nader, E., Kenyeres, P., Arriola-Montenegro, J., Ulker, P., Simmonds, M.J., Physical properties of blood and their relationship to clinical conditions. Front Physiol, 1350, 2022.
Bain, B.J., A Beginner's Guide to Blood Cells. 2004, John Wiley & Sons Ltd.
Flormann, D.A.D., Physical charaterization of red blood cell aggregation. Ph.D. thesis, 2017, Universität des Saarlandes.
Newell, D., Roath, S., Smith, J., The scanning electron microscopy of normal human peripheral blood lymphocytes. Br J Haematol 32:3 (1976), 309–316.
Yang, S., Scanning electron microscopy of normal human peripheral blood cells. J Formos Med Assoc 88:11–12 (1989), 1128–1132.
Gregory, S., Stevens, M., Fraser, J.F., Mechanical Circulatory and Respiratory Support. 2017, Academic Press.
Liebchen, B., Mukhopadhyay, A.K., Interactions in active colloids. J Phys: Condens Matter, 34(8), 2021, 083002.
Wang, L., Simmchen, J., Interactions of active colloids with passive tracers. Condens Matter, 4(3), 2019, 78.
Deng, J., Molaei, M., Chisholm, N.G., Yao, T., Read, A., Stebe, K.J., Active colloids on fluid interfaces. Curr Opin Colloid Interface Sci, 2022, 101629.
Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V.A., Poon, W.C., Escherichia coli as a model active colloid: A practical introduction. Colloids Surf, B 137 (2016), 2–16.
Jeanneret, R., Contino, M., Polin, M., A brief introduction to the model microswimmer chlamydomonas reinhardtii. Eur Phys J Spec Top 225:11 (2016), 2141–2156.
Thokchom, A.K., Swaminathan, R., Singh, A., Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis. Langmuir: ACS J Surf Colloids 30 (2014), 12144–12153.
Dugas, V., Broutin, J., Souteyrand, E., Droplet evaporation study applied to dna chip manufacturing. Langmuir 21:20 (2005), 9130–9136.
Li, Y., Zhao, Z., Lam, M.L., Liu, W., Yeung, P.P., Chieng, C.-C., Chen, T.-H., Hybridization-induced suppression of coffee ring effect for nucleic acid detection. Sens Actuators B: Chem 206 (2015), 56–64.
Askounis, A., Takata, Y., Sefiane, K., Koutsos, V., Shanahan, M.E., “biodrop” evaporation and ring-stain deposits: The significance of dna length. Langmuir 32:17 (2016), 4361–4369.
Bhar, R., Kaur, G., Mehta, S., Exploring drying pattern of a sessile droplet of genomic dna in the presence of hematite nanoparticles. Sci Rep 8:1 (2018), 1–9.
Du, X.-L., Duan, D.-M., Cao, R., Jin, G., Li, J., Enhancing dna detection sensitivity through a two-step enrichment method with magnetic beads and droplet evaporation. Anal Lett 43:9 (2010), 1525–1533.
De Gennes, P.-G., Prost, J., The Physics of Liquid Crystals, vol. 83, 1993, Oxford University Press.
Gorr, H.M., Zueger, J.M., Barnard, J.A., Characteristic size for onset of coffee-ring effect in evaporating lysozyme-water solution droplets. J Phys Chem B 116:40 (2012), 12213–12220.
Gao, M., Huang, X., Zhao, Y., Formation of wavy-ring crack in drying droplet of protein solutions. Sci China Technol Sci 61:7 (2018), 949–958.
Gorr, H.M., Zueger, J.M., McAdams, D.R., Barnard, J.A., Salt-induced pattern formation in evaporating droplets of lysozyme solutions. Colloids Surf, B 103 (2013), 59–66.
Yakhno, T., Sodium chloride crystallization from drying drops of albumin–salt solutions with different albumin concentrations. Tech Phys 60:11 (2015), 1601–1608.
Buzoverya, M., Shcherbak, Y.P., Shishpor, I., Experimental investigation of the serum albumin fascia microstructure. Tech Phys 57:9 (2012), 1270–1276.
Carreón, Y.J., González-Gutiérrez, J., Pérez-Camacho, M., Mercado-Uribe, H., Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids Surf, B 161 (2018), 103–110.
Pathak, B., Christy, J., Sefiane, K., Gozuacik, D., Complex pattern formation in solutions of protein and mixed salts using dehydrating sessile droplets. Langmuir 36:33 (2020), 9728–9737.
Gorr, H.M., Xiong, Z., Barnard, J.A., Pattern recognition for identification of lysozyme droplet solution chemistry. Colloids Surf, B 115 (2014), 170–175.
Carreón, Y.J., Ríos-Ramírez, M., Moctezuma, R., González-Gutiérrez, J., Texture analysis of protein deposits produced by droplet evaporation. Sci Rep 8:1 (2018), 1–12.
Devineau, S., Anyfantakis, M., Marichal, L., Kiger, L., Morel, M., Rudiuk, S., Baigl, D., Protein adsorption and reorganization on nanoparticles probed by the coffee-ring effect: application to single point mutation detection. J Am Chem Soc 138:36 (2016), 11623–11632.
Sett, A., Dasgupta, S., DasGupta, S., Rapid estimation of the β)sheet content of human serum albumin from the drying patterns of hsa-nanoparticle droplets. Colloids Surf, A 540 (2018), 177–185.
Majorošová, J., Tomašovičová, N., Gdovinová, V., Yang, C.-W., Batkova, M., Batko, I., Demčaková, M., Csach, K., Kubovčíková, M., Hayryan, S., et al. Self-assembly of hen egg white lysozyme fibrils doped with magnetic particles. J Magn Magn Mater 471 (2019), 400–405.
Pal, A., Gope, A., Kafle, R., Iannacchione, G.S., Phase separation of a nematic liquid crystal in the self-assembly of lysozyme in a drying aqueous solution drop. MRS Commun 9:1 (2019), 150–158.
Pal, A., Gope, A., Iannacchione, G.S., Image-based analysis of patterns formed in drying drops. International Conference on Pattern Recognition and Machine Intelligence, 2019, Springer, 567–574.
Maeda, H., An atomic force microscopy study of ordered molecular assemblies and concentric ring patterns from evaporating droplets of collagen solutions. Langmuir 15:24 (1999), 8505–8513.
Dede Eren, A., Eren, E.D., Wilting, T.J., de Boer, J., Gelderblom, H., Foolen, J., Self-agglomerated collagen patterns govern cell behaviour. Sci Rep 11:1 (2021), 1–14.
Sett, A., Bag, S., Dasgupta, S., DasGupta, S., Interfacial force-driven pattern formation during drying of aβ) (25–35) fibrils. Int J Biol Macromol 79 (2015), 344–352.
Maeda, H., Observation of spatially rhythmic patterns from evaporating collagen solution droplets. Langmuir 16:26 (2000), 9977–9982.
Nerger, B.A., Brun, P.-T., Nelson, C.M., Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci Adv, 6(24), 2020, eaaz7748.
Park, S.M., Bagnani, M., Yun, H.S., Han, M.J., Mezzenga, R., Yoon, D.K., Hierarchically fabricated amyloid fibers via evaporation-induced self-assembly. ACS Nano 15:12 (2021), 20261–20266.
Jeihanipour, A., Lahann, J., Deep-learning-assisted stratification of amyloid beta mutants using drying droplet patterns. Adv Mater, 2022, 2110404.
de Souza Lima, R., Ré, M.-I., Arlabosse, P., Drying droplet as a template for solid formation: A review. Powder Technol 359 (2020), 161–171.
Sadek, C., Schuck, P., Fallourd, Y., Pradeau, N., Jeantet, R., Le Floch-Fouere, C., Buckling and collapse during drying of a single aqueous dispersion of casein micelle droplet. Food Hydrocoll 52 (2016), 161–166.
Lanotte, L., Boissel, F., Schuck, P., Jeantet, R., Le Floch-Fouéré, C., Drying-induced mechanisms of skin formation in mixtures of high protein dairy powders. Colloids Surf, A 553 (2018), 20–27.
Le Floch-Fouéré, C., Lanotte, L., Jeantet, R., Pauchard, L., The solute mechanical properties impact on the drying of dairy and model colloidal systems. Soft Matter 15:30 (2019), 6190–6199.
Yu, M., Le Floch-Fouéré, C., Pauchard, L., Boissel, F., Fu, N., Chen, X.D., Saint-Jalmes, A., Jeantet, R., Lanotte, L., Skin layer stratification in drying droplets of dairy colloids. Colloids Surf, A, 620, 2021, 126560.
Brutin, D., Sobac, B., Nicloux, C., Influence of substrate nature on the evaporation of a sessile drop of blood. J Heat Transfer, 134(6), 2012.
Zeid, W.B., Vicente, J., Brutin, D., Influence of evaporation rate on cracks’ formation of a drying drop of whole blood. Colloids Surf, A 432 (2013), 139–146.
Zeid, W.B., Brutin, D., Effect of relative humidity on the spreading dynamics of sessile drops of blood. Colloids Surf, A 456 (2014), 273–285.
Sobac, B., Brutin, D., Desiccation of a sessile drop of blood: Cracks, folds formation and delamination. Colloids Surf, A 448 (2014), 34–44.
Chen, R., Zhang, L., Zang, D., Shen, W., Understanding desiccation patterns of blood sessile drops. J Mater Chem B 5:45 (2017), 8991–8998.
Chen, R., Zhang, L., Shen, W., Controlling the contact angle of biological sessile drops for study of their desiccated cracking patterns. J Mater Chem B 6:37 (2018), 5867–5875.
Benabdelhalim, H., Brutin, D., Phase separation during blood spreading. Sci Rep 11:1 (2021), 1–13.
Sarigul, N., Korkmaz, F., Kurultak, İ., A new artificial urine protocol to better imitate human urine. Sci Rep 9:1 (2019), 1–11.
Hertaeg, M.J., Tabor, R.F., Routh, A.F., Garnier, G., Pattern formation in drying blood drops. Philos Trans R Soc A, 379(2203), 2021, 20200391.
Iqbal, R., Shen, A.Q., Sen, A., Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates. J Colloid Interface Sci 579 (2020), 541–550.
Du, F., Zhang, L., Shen, W., The internal flow in an evaporating human blood plasma drop. J Colloid Interface Sci 609 (2022), 170–178.
Huang, J., Ali, N., Quansah, E., Guo, S., Noutsias, M., Meyer-Zedler, T., Bocklitz, T., Popp, J., Neugebauer, U., Ramoji, A., Vibrational spectroscopic investigation of blood plasma and serum by drop coating deposition for clinical application. Int J Mol Sci, 22(4), 2021, 2191.
Zurbriggen, L., Baumgartner, S., Schaub, N., Kokornaczyk, M.O., Influence of temperature and relative humidity on patterns formed in dried plasma and serum droplets. Colloid Interface Sci Commun, 49, 2022, 100645.
Efstratiou, M., Christy, J.R., Bonn, D., Sefiane, K., Transition from dendritic to cell-like crystalline structures in drying droplets of fetal bovine serum under the influence of temperature. Langmuir 38:14 (2022), 4321–4331.
Efstratiou, M., Christy, J., Bonn, D., Sefiane, K., The effect of substrate temperature on the evaporative behaviour and desiccation patterns of foetal bovine serum drops. Colloids Interfaces, 5(4), 2021, 43.
Hong, Y., Li, Y., Huang, L., He, W., Wang, S., Wang, C., Zhou, G., Chen, Y., Zhou, X., Huang, Y., et al. Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced raman spectroscopy on blood serum. J Biophotonics, 13(4), 2020, e201960176.
Gao, S., Lin, Y., Zhao, X., Gao, J., Xie, S., Gong, W., Yu, Y., Lin, J., Label-free surface enhanced raman spectroscopy analysis of blood serum via coffee ring effect for accurate diagnosis of cancers. Spectrochim Acta Part A Mol Biomol Spectrosc, 267, 2022, 120605.
Vejerano, E.P., Marr, L.C., Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface, 15(139), 2018, 20170939.
Rasheed, A., Sharma, S., Kabi, P., Saha, A., Chaudhuri, S., Basu, S., Precipitation dynamics of surrogate respiratory sessile droplets leading to possible fomites. J Colloid Interface Sci 600 (2021), 1–13.
Basu, S., Kabi, P., Chaudhuri, S., Saha, A., Insights on drying and precipitation dynamics of respiratory droplets from the perspective of covid-19. Phys Fluids, 32(12), 2020, 123317.
Fedorenko, A., Grinberg, M., Orevi, T., Kashtan, N., Survival of the enveloped bacteriophage phi6 (a surrogate for sars-cov-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci Rep 10:1 (2020), 1–10.
Seyfert, C., Rodríguez-Rodríguez, J., Lohse, D., Marin, A., Stability of respiratory-like droplets under evaporation. Phys Rev Fluids, 7(2), 2022, 023603.
Sikarwar, B.S., Roy, M., Ranjan, P., Goyal, A., Automatic disease screening method using image processing for dried blood microfluidic drop stain pattern recognition. J Med Eng Technol 40:5 (2016), 245–254.
Sagar, P., Patel, H., Rai, S., Clinical and laboratory evaluation of patients with fever with thrombocytopenia. Headache, 27, 2013, 27.
Tripette, J., Alexy, T., Hardy-Dessources, M.-D., Mougenel, D., Beltan, E., Chalabi, T., Chout, R., Etienne-Julan, M., Hue, O., Meiselman, H.J., et al. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin c disease. Haematologica 94:8 (2009), 1060–1065.
Attinger, D., Moore, C., Donaldson, A., Jafari, A., Stone, H.A., Fluid dynamics topics in bloodstain pattern analysis: comparative review and research opportunities. Forensic Sci Int 231:1–3 (2013), 375–396.
Bolen, H.L., A review of experience with the blood pattern test from 1939 to 1953. Am J Surg 87:2 (1954), 205–210.
Reinhard, K.J., Bryant, V.M., Coprolite analysis: a biological perspective on archaeology. Archaeol Method Theory 4 (1992), 245–288.
Yakhno, T.A., Yakhno, V.G., Sanin, A.G., Sanina, O.A., Pelyushenko, A.S., Egorova, N.A., Terentiev, I.G., Smetanina, S.V., Korochkina, O.V., Yashukova, E.V., The informative-capacity phenomenon of drying drops. IEEE Eng Med Biol Mag 24:2 (2005), 96–104.
Yakhno, T., Sedova, O., Sanin, A., Pelyushenko, A., On the existence of regular structures in liquid human blood serum (plasma) and phase transitions in the course of its drying. Tech Phys 48:4 (2003), 399–403.
Bahmani, L., Neysari, M., Maleki, M., The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns. Colloids Surf, A 513 (2017), 66–75.
Shibata, T., Matsumoto, S., Kogure, M., Iguchi, T., Tanaka, A., Nagano, T., Ogawa, T., Effects of diabetic human blood addition on morphology of cupric chloride dendrites grown from aqueous solutions. J Cryst Growth 219:4 (2000), 423–433.
Mukhopadhyay, M., Ray, R., Ayushman, M., Sood, P., Bhattacharyya, M., Sarkar, D., DasGupta, S., Interfacial energy driven distinctive pattern formation during the drying of blood droplets. J Colloid Interface Sci 573 (2020), 307–316.
KIMOVICH, M.A., Zimin, Y., Bochkareva, A., Morphology of dried blood serum specimens of viral. hepatitis, 2007, 207–210.
Yakhno, T.A., Sanin, A.A., Ilyazov, R.G., Vildanova, G.V., Khamzin, R.A., Astascheva, N.P., Markovsky, M.G., Bashirov, V.D., Yakhno, V.G., et al. Drying drop technology as a possible tool for detection leukemia and tuberculosis in cattle. J Biomed Sci Eng, 8(01), 2015, 1.
Muravlyova, L., Molotov-Luchanskiy, V.B., Bakirova, R.Y., Zakharova, Y.E., Klyuyev, D.A., Bakenova, P.A., Demidchik, L.A., Suleimenova, S.B., Structure-forming properties of blood plasma of patients with interstitial lung diseases. World J Med Sci 10:4 (2014), 478–483.
Rapis, E., A change in the physical state of a nonequilibrium blood plasma protein film in patients with carcinoma. Tech Phys 47:4 (2002), 510–512.
Xie, X., Li, Y., Zhang, T., Fang, H.H., Bacterial survival in evaporating deposited droplets on a teflon-coated surface. Appl Microbiol Biotechnol 73:3 (2006), 703–712.
Nellimoottil, T.T., Rao, P.N., Ghosh, S.S., Chattopadhyay, A., Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir 23 (2007), 8655–8658.
Sommer, A.P., Zhu, D., Comment on evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir, 23(23), 2007 11941–11941.
Agrawal, A., Sinha, S., Mukherjee, R., Mampallil, D., Dynamics of bacterial deposition in evaporating drops. Phys Fluids, 32(9), 2020, 093308.
Rasheed, A., Hegde, O., Chaterjee, R., Sampathirao, S.R., Chakravortty, D., Basu, S., Physics of self-assembly and morpho-topological changes of klebsiella pneumoniae in desiccating sessile droplets. bioRxiv, 2022.
Ranjbaran, M., Datta, A.K., A mechanistic model for bacterial retention and infiltration on a leaf surface during a sessile droplet evaporation. Langmuir 36 (2020), 12130–12142.
Baughman, K.F., Maier, R.M., Norris, T.A., Beam, B.M., Mudalige, A., Pemberton, J.E., Curry, J.E., Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere. Langmuir 26 (2010), 7293–7298.
Susarrey-Arce, A., Marin, A., Massey, A., Oknianska, A., Díaz-Fernandez, Y., Hernández-Sánchez, J., Griffiths, E., Gardeniers, J.G., Snoeijer, J.H., Lohse, D., et al. Pattern formation by staphylococcus epidermidis via droplet evaporation on micropillars arrays at a surface. Langmuir 32:28 (2016), 7159–7169.
Susarrey-Arce, A., Hernández-Sánchez, J.F., Marcello, M., Diaz-Fernandez, Y., Oknianska, A., Sorzabal-Bellido, I., Tiggelaar, R., Lohse, D., Gardeniers, H., Snoeijer, J., et al. Bacterial footprints in elastic pillared microstructures. ACS Appl Bio Mater 1:5 (2018), 1294–1300.
Richard, E., Dubois, T., Allion-Maurer, A., Jha, P.K., Faille, C., Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns. Food Microbiol, 91, 2020.
Baughman, K., Maier, R.M., Curry, J.E., Evaporative deposition of bacteria from a sessile drop: Effects of suspension aging. MRS Online Proc Library 1273:1 (2010), 30401–30406.
Majee, S., Chowdhury, A.R., Pinto, R., Chattopadhyay, A., Agharkar, A.N., Chakravortty, D., Basu, S., Spatiotemporal evaporating droplet dynamics on fomites enhances long term bacterial pathogenesis. Commun Biol, 4, 2021.
Kang, Y.K., Ryu, J.S., Lee, J., Chung, H.J., et al. Simple visualized readout of suppressed coffee ring patterns for rapid and isothermal genetic testing of antibacterial resistance. Biosens Bioelectron, 168, 2020, 112566.
Hegde, O., Chatterjee, R., Rasheed, A., Chakravortty, D., Basu, S., Multiscale vapor-mediated dendritic pattern formation and bacterial aggregation in complex respiratory biofluid droplets. J Colloid Interface Sci 606 (2022), 2011–2023.
Ghaeli, I., Hosseinidoust, Z., Zolfagharnasab, H., Jorge Monteiro, F., A new label-free technique for analysing evaporation induced self-assembly of viral nanoparticles based on enhanced dark-field optical imaging. Nanomaterials, 8(1), 2017, 1.
Huang, Q., Wang, W., Vikesland, P.J., Implications of the coffee-ring effect on virus infectivity. Langmuir 37 (2021), 11260–11268.
Park, S.M., Kim, W.-G., Kim, J., Choi, E.-J., Kim, H., Oh, J.-W., Yoon, D.K., Fabrication of chiral m13 bacteriophage film by evaporation-induced self-assembly. Small, 17(26), 2021, 2008097.
Ríos-Ramírez, M., Reyes-Figueroa, A., Ruiz-Suárez, J., González-Gutiérrez, J., Pattern formation of stains from dried drops to identify spermatozoa motility. Colloids Surf, B 169 (2018), 486–493.
Peshkov, A., McGaffigan, S., Quillen, A.C., Synchronized oscillations in swarms of nematode turbatrix aceti. Soft Matter 18:6 (2022), 1174–1182.
Agrawal, A., Gopu, M., Mukherjee, R., Mampallil, D., Microfluidic droplet cluster with distributed evaporation rates as a model for bioaerosols. Langmuir 38:15 (2022), 4567–4577.
Briaud, P., Camus, L., Bastien, S., Doléans-Jordheim, A., Vandenesch, F., Moreau, K., Coexistence with pseudomonas aeruginosa alters staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 9:1 (2019), 1–14.
González-Gutiérrez, J., Pérez-Isidoro, R., Pérez-Camacho, M., Ruiz-Suárez, J., The calorimetric properties of liposomes determine the morphology of dried droplets. Colloids Surf, B 155 (2017), 215–222.
Wilkinson, J., Tam, C., Askounis, A., Qi, S., Suppression of the coffee-ring effect by tailoring the viscosity of pharmaceutical sessile drops. Colloids Surf, A, 614, 2021, 126144.
Knaebel, A., Bellour, M., Munch, J.-P., Viasnoff, V., Lequeux, F., Harden, J., Aging behavior of laponite clay particle suspensions. EPL (Europhys Lett), 52(1), 2000, 73.
Guzman-Sepulveda, J.R., Wu, R., Dogariu, A., Continuous optical measurement of internal dynamics in drying colloidal droplets. J Phys Chem B 125:49 (2021), 13533–13541.
Jeong, C.H., Shin, D.H., Konduru, V., Allen, J.S., Choi, C.K., Lee, S.H., Quantitative measurements of nanoscale thin frost layers using surface plasmon resonance imaging. Int J Heat Mass Transf 124 (2018), 83–89.
Pyrgiotakis, G., Blattmann, C.O., Demokritou, P., Real-time nanoparticle–cell interactions in physiological media by atomic force microscopy. ACS Sustain Chem Eng 2:7 (2014), 1681–1690.
Kokorin, A., Nazarov, A., Serov, A., Experience in registration of evaporation of liquid drops on a substrate by the capacitive method. Journal of Physics: Conference Series, vol. 2119, 2021, IOP Publishing, 012077.
Cedeno, R., Grossier, R., Lagaize, M., Nerini, D., Candoni, N., Flood, A., Veesler, S., Nucleation in sessile saline microdroplets: induction time measurement via deliquescence–recrystallization cycling. Faraday Discuss, 2022.
Hegde, O., Chatterjee, R., Rasheed, A., Chakravortty, D., Basu, S., Vapor mediation as a tool to control micro-nano scale dendritic crystallization and preferential bacterial distribution in drying respiratory droplets. bioRxiv, 2021 2021–06.
Goy, N.-A., Bruni, N., Girot, A., Delville, J.-P., Delabre, U., Thermal marangoni trapping driven by laser absorption in evaporating droplets for particle deposition. Soft Matter 18 (2022), 7949–7958.
Jeong, C.H., Lee, H.J., Kim, D.Y., Ahangar, S.B., Choi, C.K., Lee, S.H., Quantitative analysis of contact line behaviors of evaporating binary mixture droplets using surface plasmon resonance imaging. Int J Heat Mass Transf, 165, 2021, 120690.
Kuižová, A., Kuzminova, A., Kylián, O., Kočišová, E., Nanostructured plasma polymerized fluorocarbon films for drop coating deposition raman spectroscopy (dcdrs) of liposomes. Polymers, 13(22), 2021, 4023.
Esmonde-White, K.A., Esmonde-White, F.W., Morris, M.D., Roessler, B.J., Characterization of biofluids prepared by sessile drop formation. Analyst 139:11 (2014), 2734–2741.
Capaccio, A., Sasso, A., Rusciano, G., Raman analysis of tear fluid alteration following contact lense use. Sensors, 19(15), 2019, 3392.
Cameron, J.M., Butler, H.J., Palmer, D.S., Baker, M.J., Biofluid spectroscopic disease diagnostics: A review on the processes and spectral impact of drying. J Biophotonics, 11(4), 2018, e201700299.
Mousa, M.H., Gunay, A.A., Orejon, D., Khodakarami, S., Nawaz, K., Miljkovic, N., Gas-phase temperature mapping of evaporating microdroplets. ACS Appl Mater Interfaces 13:13 (2021), 15925–15938.
Im, J.K., Jeong, L., Crha, J., Trtik, P., Jeong, J., High-resolution neutron imaging reveals kinetics of water vapor uptake into a sessile water droplet. Matter 4:6 (2021), 2083–2096.
Hooiveld, E., van der Kooij, H.M., Kisters, M., Kodger, T.E., Sprakel, J., van der Gucht, J., In-situ and quantitative imaging of evaporation-induced stratification in binary suspensions. J Colloid Interface Sci, 2022.
Pal, A., Gope, A., Iannacchione, G.S., Statistical Image Analysis of Drying Bovine Serum Albumin Droplets in Phosphate Buffered Saline. 2021, John Wiley & Sons, Ltd. chapter 8, p. 213–235.
Acuña, C., Mier y Terán, A., Kokornaczyk, M.O., Baumgartner, S., Castelán, M., Deep learning applied to analyze patterns from evaporated droplets of viscum album extracts. Sci Rep 12:1 (2022), 1–11.
Haralick, R.M., Shanmugam, K., Dinstein, I.H., Textural features for image classification. IEEE Trans Syst Man Cybern 6 (1973), 610–621.
Ramola, A., Shakya, A.K., Van Pham, D., Study of statistical methods for texture analysis and their modern evolutions. Eng Rep, 2(4), 2020, e12149.
Kokornaczyk, M.O., Würtenberger, S., Baumgartner, S., Series of experiments performed with the droplet evaporation method on low potencies. Int J High Dilution Res 1982-6206, 21(1), 2022 28–28.
Jerman, I., Detecting subtle field effect from coral calcium via droplet evaporation method. Water: Multidiscip Res J 12 (2021), 1–16.
Sengupta, A., Herminghaus, S., Bahr, C., Opto-fluidic velocimetry using liquid crystal microfluidics. Appl Phys Lett, 101, 2012, 164101.
Sengupta, A., Herminghaus, S., Bahr, C., Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq Cryst Rev 2 (2014), 73–110.
Sharma, A., Ong, I.L., Sengupta, A., Time dependent lyotropic chromonic textures in microfluidic confinements. Crystals, 11, 2020, 35.
Ulaganathan V, Sengupta A. Spatio-temporal programming of lyotropic phase transition in nanoporous microfluidic confinements. arXiV arXiv:2209.02151v2; 2022.
Zhang, P., Xu, Z., Wang, T., Che, Z., A method to measure vapor concentration of droplet evaporation based on background oriented schlieren. Int J Heat Mass Transf, 168, 2021, 120880.
Jaber, A., Vayron, R., Harmand, S., Effect of temperature on evaporation dynamics of sheep's blood droplets and topographic analysis of induced patterns. Heliyon, 2022, e11258.
Roy, A., Haque, R., Mitra, A., Choudhury, M.D., Tarafdar, S., Dutta, T., Understanding flow features in drying droplets via euler characteristic surfaces—a topological tool. Phys Fluids, 32(12), 2020, 123310.
Li, X., Sanderson, A.R., Allen, S.S., Lahr, R.H., Tap water fingerprinting using a convolutional neural network built from images of the coffee-ring effect. Analyst 145:4 (2020), 1511–1523.
Harindran, A., Madhurima, V., Pattern formation studies during different milk processes. Advanced Microscopy, 2022, Apple Academic Press, 289–302.
Harindran, A., Hashmi, S., Madhurima, V., Pattern formation of dried droplets of milk during different processes and classifying them using artificial neural networks. J Dispersion Sci Technol, 2021, 1–10.
Hamadeh, L., Imran, S., Bencsik, M., Sharpe, G.R., Johnson, M.A., Fairhurst, D.J., Machine learning analysis for quantitative discrimination of dried blood droplets. Sci Rep 10:1 (2020), 1–13.
Hegde O, Chatterjee R, Roy D, Jaiswal V, Chakravortty D, Basu S. Convolution neural networks for point-of-care diagnostics of bacterial infections in blood; 2022.
Kim, N., Li, Z., Hurth, C., Zenhausern, F., Chang, S.-F., Attinger, D., Identification of fluid and substrate chemistry based on automatic pattern recognition of stains. Anal Methods 4:1 (2012), 50–57.
Choi, S., Birarda, G., Protein mixture segregation at coffee-ring: real-time imaging of protein ring precipitation by ftir spectromicroscopy. J Phys Chem B 121:30 (2017), 7359–7365.
Wang, W., Yin, Y., Tan, Z., Liu, J., Coffee-ring effect-based simultaneous sers substrate fabrication and analyte enrichment for trace analysis. Nanoscale 6:16 (2014), 9588–9593.
Jiang, Y., Xu, W., Choi, C.-H., Effects of particulates on contact angles and adhesion of a droplet: A critical review. Rev Adhes Adhes 4:2 (2016), 192–222.
Santini, E., Nepita, I., Bykov, A.G., Ravera, F., Liggieri, L., Dowlati, S., Javadi, A., Miller, R., Loglio, G., Interfacial dynamics of adsorption layers as supports for biomedical research and diagnostics. Colloids Interfaces, 6(4), 2022, 81.
Firouzi, M., Kovalchuk, V.I., Loglio, G., Miller, R., Salt effects on the dilational viscoelasticity of surfactant adsorption layers. Curr Opin Colloid Interface Sci, 57, 2022, 101538.
Guo, W., Kinghorn, A.B., Zhang, Y., Li, Q., Poonam, A.D., Tanner, J.A., Shum, H.C., Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 12:1 (2021), 1–13.
Watanabe, C., Yanagisawa, M., Evaporation patterns of dextran–poly (ethylene glycol) droplets with changes in wettability and compatibility. Life, 12(3), 2022, 373.
Janocha, M., Tsotsas, E., In-depth investigation of incremental layer build-up from dried deposited droplets. AIChE J, 68(2), 2022, e17445.
Shourni, S., Javadi, A., Hosseinpour, N., Bahramian, A., Raoufi, M., Characterization of protein corona formation on nanoparticles via the analysis of dynamic interfacial properties: Bovine serum albumin-silica particle interaction. Colloids Surf, A, 638, 2022, 128273.
Galy, P.E., Guitton-Spassky, T., Sella, C., Thouin, L., Vitale, M.R., Baigl, D., Redox control of particle deposition from drying drops. ACS Appl Mater Interfaces 14:2 (2022), 3374–3384.
Andalib, S., Taira, K., Kavehpour, H.P., Data-driven time-dependent state estimation for interfacial fluid mechanics in evaporating droplets. Sci Rep 11:1 (2021), 1–11.
Javadi, A., Dowlati, S., Shourni, S., Miller, R., Kraume, M., Kopka, K., Eckert, K., Experimental techniques to study protein–surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange. Adv Colloid Interface Sci, 2022, 102601.
Jasak, H., Openfoam: open source cfd in research and industry. Int J Nav Archit Ocean Eng 1:2 (2009), 89–94.
Shabalin, V., Shatokhina, S., Diagnostic markers in the structures of human biological liquids. Singapore Med J, 48(5), 2007, 440.
Bel'skaya, L.V., Sarf, E.A., Solonenko, A.P., Morphology of dried drop patterns of saliva from a healthy individual depending on the dynamics of its surface tension. Surfaces 2:2 (2019), 395–414.
Bel'skaya, L.V., Solomatin, D.V., Influence of surface tension on the characteristics of ftir spectra on the example of saliva. J Mol Liq, 335, 2021, 116173.
Bel'skaya, L.V., Sarf, E.A., Kosenok, V.K., Analysis of saliva lipids in breast and prostate cancer by ir spectroscopy. Diagnostics, 11(8), 2021, 1325.
Bel'skaya, L.V., Sarf, E.A., Shalygin, S.P., Postnova, T.V., Kosenok, V.K., Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. J Oral Biosci 62:2 (2020), 212–221.
Bel'skaya, L.V., Sarf, E.A., Solomatin, D.V., Kosenok, V.K., Analysis of the lipid profile of saliva in ovarian and endometrial cancer by ir fourier spectroscopy. Vib Spectrosc, 104, 2019, 102944.
Bel'skaya, L.V., Sarf, E.A., Solomatin, D.V., Kosenok, V.K., Features of the metabolic profile of saliva in lung cancer and copd: The effect of smoking status. Metabolites, 11(5), 2021, 289.
Bel'skaya, L.V., Sarf, E.A., Solomatin, D.V., Age and gender characteristics of the infrared spectra of normal human saliva. Appl Spectrosc 74:5 (2020), 536–543.
Guan, S., Fu, Q., Wang, D., Han, Y., Cao, N., Zhang, M., Shen, H., Yang, R., He, B., Tao, M., et al. Point-of-care urinalysis with one drop of sample using an aggregation-induced emission luminogen under the coffee-ring effect. ACS Sensors, 2022.
Gulka, C.P., Swartz, J.D., Trantum, J.R., Davis, K.M., Peak, C.M., Denton, A.J., Haselton, F.R., Wright, D.W., Coffee rings as low-resource diagnostics: detection of the malaria biomarker plasmodium falciparum histidine-rich protein-ii using a surface-coupled ring of ni (ii) nta gold-plated polystyrene particles. ACS Appl Mater Interfaces 6:9 (2014), 6257–6263.
Glinská, G., Krajčíková, K., Zakutanská, K., Shylenko, O., Kondrakhova, D., Tomašovičová, N., Komanickỳ, V., Mašlanková, J., Tomečková, V., Noninvasive diagnostic methods for diabetes mellitus from tear fluid. RSC Adv 9:31 (2019), 18050–18059.
Arévalo, L.A., O'Brien, S.A., Antonova, O., Seifert, A., Drying patterns of cerebrospinal fluid as indicator for alzheimer's disease by a machine learning framework. Journal of Physics: Conference Series, vol. 2407, 2022, IOP Publishing, 012027.
Hussain, A., Sun, D.-W., Pu, H., Sers detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Addit Contam: Part A 36:6 (2019), 851–862.
Carreón, Y.J., Díaz-Hernández, O., Escalera Santos, G.J., Cipriano-Urbano, I., Solorio-Ordaz, F.J., González-Gutiérrez, J., Zenit, R., Texture analysis of dried droplets for the quality control of medicines. Sensors, 21(12), 2021, 4048.
Kokornaczyk, M.O., Würtenberger, S., Baumgartner, S., Impact of succussion on pharmaceutical preparations analyzed by means of patterns from evaporated droplets. Sci Rep 10:1 (2020), 1–10.
Rathaur, V.S., Kumar, S., Panigrahi, P.K., Panda, S., Investigating the effect of antibody–antigen reactions on the internal convection in a sessile droplet via microparticle image velocimetry and dlvo analysis. Langmuir 36:30 (2020), 8826–8838.
Wen, J.T., Ho, C.-M., Lillehoj, P.B., Coffee ring aptasensor for rapid protein detection. Langmuir 29:26 (2013), 8440–8446.