[en] Structural, electronic, and thermodynamic properties of native defects in GaS and GaSe monolayers are investigated by means of accurate ab initio calculations. Based on their charge transition levels we assess the influence of the studied defects on the electrical properties of the monolayers. Specifically, we show that native defects do not behave as shallow dopants and their presence cannot account for the experimentally observed intrinsic doping. In addition, we predict that native defects are efficient compensation and recombination centers. Besides pointing out their detrimental nature, we also calculate the corresponding finite-temperature formation energies and provide a window of growth conditions able to reduce the concentration of all relevant native defects.
Disciplines :
Physique
Auteur, co-auteur :
Barragan-Yani, Daniel
Polfus, Jonathan M.
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Native defects in monolayer GaS and GaSe: Electrical properties and thermodynamic stability
X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, Appl. Phys. Rev. 4, 021306 (2017) 1931-9401 10.1063/1.4983646.
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009) 0034-6861 10.1103/RevModPhys.81.109.
M. Katsnelson and M. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004) 0036-8075 10.1126/science.1102896.
C. Galiotis, O. Frank, E. N. Koukaras, and D. Sfyris, Annu. Rev. Chem. Biomol. Eng. 6, 121 (2015) 1947-5438 10.1146/annurev-chembioeng-061114-123216.
H. Raza, Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications, NanoScience and Technology (Springer, Berlin, 2012).
F. Schwierz, Nat. Nanotechnol. 5, 487 (2010) 1748-3387 10.1038/nnano.2010.89.
W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014) 1748-3387 10.1038/nnano.2014.214.
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010) 1749-4885 10.1038/nphoton.2010.186.
S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annu. Rev. Mater. Res. 45, 1 (2015) 1531-7331 10.1146/annurev-matsci-070214-021034.
S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017) 2058-8437 10.1038/natrevmats.2017.33.
T. C. Berkelbach and D. R. Reichman, Annu. Rev. Condens. Matter Phys. 9, 379 (2018) 1947-5454 10.1146/annurev-conmatphys-033117-054009.
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016) 2058-8437 10.1038/natrevmats.2016.55.
K. F. Mak, D. Xiao, and J. Shan, Nat. Photon. 12, 451 (2018) 1749-4885 10.1038/s41566-018-0204-6.
K. Xu, L. Yin, Y. Huang, T. A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wang, and J. He, Nanoscale 8, 16802 (2016) 2040-3364 10.1039/C6NR05976G.
H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D. B. Geohegan, and K. Xiao, Appl. Phys. Rev. 6, 041312 (2019) 1931-9401 10.1063/1.5123487.
V. Zólyomi, N. D. Drummond, and V. I. Fal'ko, Phys. Rev. B 87, 195403 (2013) 1098-0121 10.1103/PhysRevB.87.195403.
V. Zólyomi, N. D. Drummond, and V. I. Fal'ko, Phys. Rev. B 89, 205416 (2014) 1098-0121 10.1103/PhysRevB.89.205416.
D. V. Rybkovskiy, A. V. Osadchy, and E. D. Obraztsova, Phys. Rev. B 90, 235302 (2014) 1098-0121 10.1103/PhysRevB.90.235302.
M. Zhou, R. Zhang, J. Sun, W.-K. Lou, D. Zhang, W. Yang, and K. Chang, Phys. Rev. B 96, 155430 (2017) 2469-9950 10.1103/PhysRevB.96.155430.
S. Demirci, N. Avazli, E. Durgun, and S. Cahangirov, Phys. Rev. B 95, 115409 (2017) 2469-9950 10.1103/PhysRevB.95.115409.
Z. Ben Aziza, V. Zólyomi, H. Henck, D. Pierucci, M. G. Silly, J. Avila, S. J. Magorrian, J. Chaste, C. Chen, M. Yoon, K. Xiao, F. Sirotti, M. C. Asensio, E. Lhuillier, M. Eddrief, V. I. Fal'ko, and A. Ouerghi, Phys. Rev. B 98, 115405 (2018) 2469-9950 10.1103/PhysRevB.98.115405.
M. J. Hamer, J. Zultak, A. V. Tyurnina, V. Zólyomi, D. Terry, A. Barinov, A. Garner, J. Donoghue, A. P. Rooney, V. Kandyba, A. Giampietri, A. Graham, N. Teutsch, X. Xia, M. Koperski, S. J. Haigh, V. I. Fal'ko, R. V. Gorbachev, and N. R. Wilson, ACS Nano 13, 2136 (2019) 10.1021/acsnano.8b08726.
A. Budweg, D. Yadav, A. Grupp, A. Leitenstorfer, M. Trushin, F. Pauly, and D. Brida, Phys. Rev. B 100, 045404 (2019) 2469-9950 10.1103/PhysRevB.100.045404.
L. Seixas, A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett. 116, 206803 (2016) 0031-9007 10.1103/PhysRevLett.116.206803.
T. Cao, Z. Li, and S. G. Louie, Phys. Rev. Lett. 114, 236602 (2015) 0031-9007 10.1103/PhysRevLett.114.236602.
K. Iordanidou, M. Houssa, J. Kioseoglou, V. V. Afanas'ev, A. Stesmans, and C. Persson, ACS Appl. Nano Mater. 1, 6656 (2018) 2574-0970 10.1021/acsanm.8b01476.
N. Sethulakshmi, A. Mishra, P. Ajayan, Y. Kawazoe, A. K. Roy, A. K. Singh, and C. S. Tiwary, Mater. Today 27, 107 (2019) 1369-7021 10.1016/j.mattod.2019.03.015.
D. Wickramaratne, F. Zahid, and R. K. Lake, J. Appl. Phys. 118, 075101 (2015) 0021-8979 10.1063/1.4928559.
P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, ACS Nano 6, 5988 (2012) 1936-0851 10.1021/nn300889c.
S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Nano Lett. 13, 2777 (2013) 1530-6984 10.1021/nl4010089.
P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, Nano Lett. 13, 1649 (2013) 1530-6984 10.1021/nl400107k.
X. Li, M.-W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. Chi, M. Yoon, C. M. Rouleau, I. I. Kravchenko, D. B. Geohegan, and K. Xiao, Sci. Rep. 4, 5497 (2015) 2045-2322 10.1038/srep05497.
M. Mahjouri-Samani, R. Gresback, M. Tian, K. Wang, A. A. Puretzky, C. M. Rouleau, G. Eres, I. N. Ivanov, K. Xiao, M. A. McGuire, G. Duscher, and D. B. Geohegan, Adv. Funct. Mater. 24, 6365 (2014) 1616301X 10.1002/adfm.201401440.
W. Jie, X. Chen, D. Li, L. Xie, Y. Y. Hui, S. P. Lau, X. Cui, and J. Hao, Angew. Chem., Int. Ed. 54, 1185 (2015) 1433-7851 10.1002/anie.201409837.
X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu, and D. Yu, J. Am. Chem. Soc. 137, 7994 (2015) 0002-7863 10.1021/jacs.5b04305.
K. Cheng, Y. Guo, N. Han, X. Jiang, J. Zhang, R. Ahuja, Y. Su, and J. Zhao, Appl. Phys. Lett. 112, 143902 (2018) 0003-6951 10.1063/1.5020618.
D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid, Adv. Mater. 24, 3549 (2012) 0935-9648 10.1002/adma.201201361.
H. L. Zhuang and R. G. Hennig, Chem. Mater. 25, 3232 (2013) 0897-4756 10.1021/cm401661x.
S. Kouser, A. Thannikoth, U. Gupta, U. V. Waghmare, and C. N. R. Rao, Small 11, 4723 (2015) 1613-6810 10.1002/smll.201501077.
A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H. C. Nerl, E. McGuire, A. Seral-Ascaso, Q. M. Ramasse, N. McEvoy, S. Winters, N. C. Berner, D. McCloskey, J. F. Donegan, G. S. Duesberg, V. Nicolosi, and J. N. Coleman, Chem. Mater. 27, 3483 (2015) 0897-4756 10.1021/acs.chemmater.5b00910.
Y. Cui, L. Peng, L. Sun, Q. Qian, and Y. Huang, J. Mater. Chem. A 6, 22768 (2018) 2050-7488 10.1039/C8TA08103D.
Z. Zhu, Y. Cheng, and U. Schwingenschlögl, Phys. Rev. Lett. 108, 266805 (2012) 0031-9007 10.1103/PhysRevLett.108.266805.
S. Zhou, C.-C. Liu, J. Zhao, and Y. Yao, npj Quantum Mater. 3, 16 (2018) 2397-4648 10.1038/s41535-018-0089-0.
D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Adv. Funct. Mater. 22, 1894 (2012) 1616301X 10.1002/adfm.201102913.
Y. Wu, D. Zhang, K. Lee, G. S. Duesberg, A. Syrlybekov, X. Liu, M. Abid, M. Abid, Y. Liu, L. Zhang, C. Coileáin, H. Xu, J. Cho, M. Choi, B. S. Chun, H. Wang, H. Liu, and H.-C. Wu, Adv. Mater. Technol. 2, 1600197 (2017) 10.1002/admt.201600197.
Z. Ben Aziza, H. Henck, D. Pierucci, M. G. Silly, E. Lhuillier, G. Patriarche, F. Sirotti, M. Eddrief, and A. Ouerghi, ACS Nano 10, 9679 (2016) 1936-0851 10.1021/acsnano.6b05521.
C. H. Lee, S. Krishnamoorthy, D. J. O'Hara, M. R. Brenner, J. M. Johnson, J. S. Jamison, R. C. Myers, R. K. Kawakami, J. Hwang, and S. Rajan, J. Appl. Phys. 121, 094302 (2017) 0021-8979 10.1063/1.4977697.
M.-W. Chen, H. Kim, D. Ovchinnikov, A. Kuc, T. Heine, O. Renault, and A. Kis, npj 2D Mater. Appl. 2, 2 (2018) 2397-7132 10.1038/s41699-017-0047-x.
X. Li, L. Basile, B. Huang, C. Ma, J. Lee, I. V. Vlassiouk, A. A. Puretzky, M.-W. Lin, M. Yoon, M. Chi, J. C. Idrobo, C. M. Rouleau, B. G. Sumpter, D. B. Geohegan, and K. Xiao, ACS Nano 9, 8078 (2015) 1936-0851 10.1021/acsnano.5b01943.
X. Li, M.-W. Lin, J. Lin, B. Huang, A. A. Puretzky, C. Ma, K. Wang, W. Zhou, S. T. Pantelides, M. Chi, I. Kravchenko, J. Fowlkes, C. M. Rouleau, D. B. Geohegan, and K. Xiao, Sci. Adv. 2, e1501882 (2016) 10.1126/sciadv.1501882.
X. Li, J. Dong, J. C. Idrobo, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, F. Ding, and K. Xiao, J. Am. Chem. Soc. 139, 482 (2017) 0002-7863 10.1021/jacs.6b11076.
P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 3rd ed., Advanced Texts in Physics (Springer, Berlin, 2005).
M. McCluskey and E. Haller, Dopants and Defects in Semiconductors (Taylor & Francis, London, 2012).
P. Tonndorf, S. Schwarz, J. Kern, I. Niehues, O. D. Pozo-Zamudio, A. I. Dmitriev, A. P. Bakhtinov, D. N. Borisenko, N. N. Kolesnikov, A. I. Tartakovskii, S. M. de Vasconcellos, and R. Bratschitsch, 2D Mater. 4, 021010 (2017) 2053-1583 10.1088/2053-1583/aa525b.
M. Toth and I. Aharonovich, Annu. Rev. Phys. Chem. 70, 123 (2019) 0066-426X 10.1146/annurev-physchem-042018-052628.
Z. Ben Aziza, D. Pierucci, H. Henck, M. G. Silly, C. David, M. Yoon, F. Sirotti, K. Xiao, M. Eddrief, J.-C. Girard, and A. Ouerghi, Phys. Rev. B 96, 035407 (2017) 2469-9950 10.1103/PhysRevB.96.035407.
H. Chen, Y. Li, L. Huang, and J. Li, RSC Adv. 5, 50883 (2015) 2046-2069 10.1039/C5RA08329J.
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, J. Chem. Phys. 147, 104709 (2017) 0021-9606 10.1063/1.4993639.
D. G. Hopkinson, V. Zólyomi, A. P. Rooney, N. Clark, D. J. Terry, M. Hamer, D. J. Lewis, C. S. Allen, A. I. Kirkland, Y. Andreev, Z. Kudrynskyi, Z. Kovalyuk, A. Patanè, V. I. Fal'ko, R. Gorbachev, and S. J. Haigh, ACS Nano 13, 5112 (2019) 1936-0851 10.1021/acsnano.8b08253.
A. Dabral, A. K. A. Lu, D. Chiappe, M. Houssa, and G. Pourtois, Phys. Chem. Chem. Phys. 21, 1089 (2019) 1463-9076 10.1039/C8CP05665J.
P. Deák, M. Han, M. Lorke, M. F. Tabriz, and T. Frauenheim, J. Phys.: Condens. Matter 32, 285503 (2020) 0953-8984 10.1088/1361-648X/ab7fdb.
H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 91, 125304 (2015) 1098-0121 10.1103/PhysRevB.91.125304.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996) 0163-1829 10.1103/PhysRevB.54.11169.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) 0021-9606 10.1063/1.1564060.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006) 0021-9606 10.1063/1.2204597.
S. Grimme, J. Comput. Chem. 27, 1787 (2006) 0192-8651 10.1002/jcc.20495.
S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, Chem. Rev. 116, 5105 (2016) 0009-2665 10.1021/acs.chemrev.5b00533.
T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012) 0031-9007 10.1103/PhysRevLett.108.235502.
T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, J. Phys.: Condens. Matter 24, 424218 (2012) 0953-8984 10.1088/0953-8984/24/42/424218.
X. Liu, J. Yang, and W. Guo, Phys. Rev. B 101, 045428 (2020) 2469-9950 10.1103/PhysRevB.101.045428.
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014) 0034-6861 10.1103/RevModPhys.86.253.
A. Alkauskas, P. Deák, J. Neugebauer, A. Pasquarello, and C. Van de Walle, Advanced Calculations for Defects in Materials: Electronic Structure Methods (Wiley, New York, 2011).
W. Chen and A. Pasquarello, J. Phys.: Condens. Matter 27, 133202 (2015) 0953-8984 10.1088/0953-8984/27/13/133202.
F. Oba and Y. Kumagai, Appl. Phys. Express 11, 060101 (2018) 1882-0778 10.7567/APEX.11.060101.
L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. B 97, 214104 (2018) 2469-9950 10.1103/PhysRevB.97.214104.
M. E. Turiansky, A. Alkauskas, L. C. Bassett, and C. G. Van de Walle, Phys. Rev. Lett. 123, 127401 (2019) 0031-9007 10.1103/PhysRevLett.123.127401.
C. S. Jung, F. Shojaei, K. Park, J. Y. Oh, H. S. Im, D. M. Jang, J. Park, and H. S. Kang, ACS Nano 9, 9585 (2015) 1936-0851 10.1021/acsnano.5b04876.
D. V. Rybkovskiy, N. R. Arutyunyan, A. S. Orekhov, I. A. Gromchenko, I. V. Vorobiev, A. V. Osadchy, E. Y. Salaev, T. K. Baykara, K. R. Allakhverdiev, and E. D. Obraztsova, Phys. Rev. B 84, 085314 (2011) 1098-0121 10.1103/PhysRevB.84.085314.
P. Deák, E. Khorasani, M. Lorke, M. Farzalipour-Tabriz, B. Aradi, and T. Frauenheim, Phys. Rev. B 100, 235304 (2019) 2469-9950 10.1103/PhysRevB.100.235304.
J.-Y. Noh, H. Kim, and Y.-S. Kim, Phys. Rev. B 89, 205417 (2014) 1098-0121 10.1103/PhysRevB.89.205417.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevMaterials.6.114002 for details about the calculation of the effective dielectric constants and the relaxed structures of the studied native defects in monolayer GaSe.
S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991) 0031-9007 10.1103/PhysRevLett.67.2339.
I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances: Supplement (Springer, Berlin, 1977), p. 861.
M. Chase, NIST-JANAF Thermochemical Tables, 4th ed. (American Institute of Physics, College Park, MD, 1998).
OECD Nuclear Energy Agency, Chemical Thermodynamics of Selenium, Chemical Thermodynamics Vol. 7 (Elsevier Science, New York, 2005).
M. Leslie and N. J. Gillan, J. Phys. C: Solid State Phys. 18, 973 (1985) 0022-3719 10.1088/0022-3719/18/5/005.
G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995) 0163-1829 10.1103/PhysRevB.51.4014.
C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 (2006) 1098-0121 10.1103/PhysRevB.73.035215.
S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008) 1098-0121 10.1103/PhysRevB.78.235104.
C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009) 0031-9007 10.1103/PhysRevLett.102.016402.
H.-P. Komsa, T. T. Rantala, and A. Pasquarello, Phys. Rev. B 86, 045112 (2012) 1098-0121 10.1103/PhysRevB.86.045112.
Y. Kumagai and F. Oba, Phys. Rev. B 89, 195205 (2014) 1098-0121 10.1103/PhysRevB.89.195205.
H.-P. Komsa and A. Pasquarello, Phys. Rev. Lett. 110, 095505 (2013) 0031-9007 10.1103/PhysRevLett.110.095505.
H.-P. Komsa, N. Berseneva, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. X 4, 031044 (2014) 2160-3308 10.1103/PhysRevX.4.031044.
D. Wang, D. Han, X.-B. Li, S.-Y. Xie, N.-K. Chen, W. Q. Tian, D. West, H.-B. Sun, and S. B. Zhang, Phys. Rev. Lett. 114, 196801 (2015) 0031-9007 10.1103/PhysRevLett.114.196801.
D. Wang, D. Han, X.-B. Li, N.-K. Chen, D. West, V. Meunier, S. Zhang, and H.-B. Sun, Phys. Rev. B 96, 155424 (2017) 2469-9950 10.1103/PhysRevB.96.155424.
R. Sundararaman and Y. Ping, J. Chem. Phys. 146, 104109 (2017) 0021-9606 10.1063/1.4978238.
F. Wu, A. Galatas, R. Sundararaman, D. Rocca, and Y. Ping, Phys. Rev. Mater. 1, 071001 (R) (2017) 2475-9953 10.1103/PhysRevMaterials.1.071001.
C. Freysoldt and J. Neugebauer, Phys. Rev. B 97, 205425 (2018) 2469-9950 10.1103/PhysRevB.97.205425.